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Preface

Matching problems involving preferences occur in widespread applications

such as the assignment of children to schools, school-leavers to universities,

junior doctors to hospitals, students to campus housing, kidney transplant

patients to donors and so on. The common thread is that agents have

preferences over the possible outcomes and the task is to find a matching

(i.e., an assignment of the participants to one another) that is in some sense

optimal with respect to these preferences.

These problems are growing in importance in an era in which more and

more elements of society are embracing diverse forms of electronic commu-

nication, and individuals are increasingly used to making choices via the

internet. The ease by which preference information can now be collected

has contributed to the growing tendency for matching processes to be cen-

tralised. Due to the typical size of applications (for example, in China,

over 10 million students apply for admission to higher education annually

through a centralised process), trying to construct optimal allocations man-

ually (given a suitable definition of “optimal”) is simply not feasible.

Thus algorithms are required to automate the process of constructing

optimal matchings. Again, due to the size of typical applications, the effi-

ciency of the algorithms is of paramount importance. The notion of opti-

mality is also a key consideration: many matching processes are conducted

by publicly-funded organisations, and there is an increasing tendency for

the decisions reached by these organisations to be scrutinised both in the

media and by individuals through Freedom of Information requests, for ex-

ample. Thus the algorithms need to construct matchings that are not just

provably optimal, but also are seen to be “fair” by the agents involved.

This book focuses on algorithmic aspects of matching problems in-

volving preferences — our aim is to describe efficient (polynomial-time

vii
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algorithms) that produce optimal matchings (under many different no-

tions of optimality) or to highlight complexity results that imply the non-

existence of such algorithms. We also describe some of the many applica-

tions in which these algorithms are used.

Our interest, therefore, is in the underlying computational matching

problems that arise in matching markets. The importance of this research

area was recognised by the award, in 2012, of the Sveriges Riksbank Prize

in Economic Sciences in Memory of Alfred Nobel (commonly known as the

Nobel Prize in Economic Sciences) to Alvin Roth and Lloyd Shapley, who

are both leading figures in the research area.

The archetypal matching problem involving preferences is the celebrated

Stable Marriage problem, first introduced by David Gale and Lloyd Shapley

in 1962 [235]. The main contribution of this paper was an algorithm, known

as the Gale–Shapley algorithm, to solve this problem. This algorithm has

been put to practical use in a wide-range of large-scale applications in

countries throughout the world.

Thereafter, Donald Knuth’s interest in the problem was reflected in

a collection of lectures published in 1976 [394]. A series of papers writ-

ten by Dan Gusfield, Rob Irving and co-authors in the 1980s uncovered

deep structural relationships that are present in Stable Marriage problem

instances, and showed how these lead to efficient algorithms for many prob-

lems associated with the computation of so-called stable matchings. This

culminated in the publication of their monograph “The Stable Marriage

Problem: Structure and Algorithms” in 1989 [261].

This book has become the standard reference in the literature for struc-

tural and algorithmic aspects of the Stable Marriage problem, and indeed its

non-bipartite generalisation, the Stable Roommates problem. It contains

clear and elegant descriptions of a range of stable matching algorithms,

showing how these exploit the fundamental correspondence between the

lattice structure of stable matchings and the so-called rotation poset that

holds in problem instances. It is a much valued resource for those engaged

in stable matching research.

Shortly afterwards, in 1990, a related monograph, entitled “Two-sided

matching: a case study in game-theoretic modeling and analysis”, by Al

Roth and Marilda Sotomayor, was published. This book focused mainly on

game-theoretic and strategic questions involving the Stable Marriage prob-

lem and its many–one generalisation, the Hospitals / Residents problem,

among others.
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Since the publication of these books, the algorithmic interest in the

Stable Marriage problem and its variants has shown no sign of diminish-

ing in the literature. Papers since then have also focused on the Stable

Roommates problem, the Hospitals / Residents problem and the House

Allocation problem.

We classify matching problems with preferences according to three

broad classes: (i) bipartite matching problems with two-sided preferences

(including the Stable Marriage and Hospitals / Residents problems and

their variants), (ii) bipartite matching problems with one-sided preferences

(incorporating the House Allocation problem and its variants), and (iii)

non-bipartite matching problems with preferences (including the Stable

Roommates problem and its variants). Problems in classes (i) and (iii)

will mainly be studied with respect to the stability of a given matching,

whilst problems in class (ii) involve other optimality criteria such as Pareto

optimality, popularity and rank-maximality.

Researchers who are interested in matching problems with preferences

are drawn from a range of backgrounds, including the algorithms and com-

plexity, discrete mathematics, game theory and economics, and computa-

tional social choice fields. The community is growing and its strength is

reflected in the fact that several workshops in the area have taken place in

recent years.

The year 2008 saw the first workshop on matching problems with pref-

erences, with an emphasis on algorithmic aspects, co-organised by the au-

thor, Magnús Halldórsson, Rob Irving and Kazuo Iwama. This one-day

meeting, entitled “MATCH-UP: Matching Under Preferences – Algorithms

and Complexity” [266], took place in Reykjav́ık as a satellite workshop of

ICALP 2008 (the 35th International Colloquium on Automata, Languages

and Programming). Invited speakers included Kurt Mehlhorn, Al Roth

and Marilda Sotomayor. David Gale, who had agreed to open the work-

shop with an invited lecture, sadly died in the March preceding the work-

shop; consequently the event was dedicated to his memory and Marilda

Sotomayor’s invited lecture formed a tribute to his career and their col-

laboration. Selected papers from the workshop, and several other papers

on matching under preferences, appeared in a special issue of the journal

Algorithmica [417], published in 2010.

A conference entitled “Frontiers of Market Design” was organised by

Bettina Klaus in Ascona, Switzerland, in May 2012. Its main focus was

on matching markets, and this included matching problems with prefer-

ences. Furthermore, a mini-symposium on “Matchings with Preferences”

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org


February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

x Preface

was organised by Christine Cheng at the SIAM Conference on Discrete

Mathematics, in Halifax, Canada, in June 2012.

A successor to the 2008 MATCH-UP workshop, entitled “MATCH-UP

2012: the Second International Workshop on Matching Under Preferences”

took place, this time over two days, in Budapest in July 2012. This work-

shop was co-organised by Péter Biró, the author, Tamás Fleiner and Tamás

Solymosi, and aimed to involve economists as well as computer scientists.

On this occasion, the invited speakers were Nicole Immorlica, Rob Irving,

Fuhito Kojima, and Tayfun Sönmez. The workshop was very well-attended,

with 68 participants. Again, several papers appearing in the proceedings

[78] were invited for submission to a special issue of the journal Algorithms.

October 2012 saw the announcement of the award of the Nobel Prize in

Economic Sciences to Al Roth and Lloyd Shapley, as previously mentioned,

for their work in “the theory of stable allocations and the practice of market

design”. This reflects both Shapley’s contribution to the Stable Marriage

algorithm among other theoretical advances, and Roth’s application of these

results to matching markets involving the assignment of junior doctors to

hospitals, pupils to schools and kidney patients to donors (through “kidney

exchanges”). The Stable Marriage problem and its variants essentially form

the basis of Part 1 of this book, whilst the many applications of matching

problems will be highlighted throughout.

These events serve to illustrate the level of interest in the research com-

munity in matching under preferences. Indeed at the 2008 MATCH-UP

workshop, it became clear from conversations with participants that the

time was right for a comprehensive update of the state of the art concern-

ing algorithmic aspects of matching under preferences. This book aims to

provide such an update. Whilst in a sense it could be regarded as a “se-

quel” to Gusfield and Irving’s monograph [261], our aim is to expand the

range of matching problems that they considered and additionally include

alternative optimality criteria besides stability.

The intended readership of this book includes PhD students, postdoc-

toral researchers and academic staff engaged in research on matching un-

der preferences, senior undergraduate and taught postgraduate students

engaged in project work relating to matching under preferences or tak-

ing an advanced course on matching theory, and indeed administrators of

centralised matching schemes who are interested in the algorithms that

underpin these programmes.

The book is largely a comprehensive, classified and guided survey

through the literature on matching problems with preferences. Thus the
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majority of results have been published already in some form. However the

book does include some new results due to the author (or his collaborators,

reproduced with their permission) that have not been published previously.

Although much effort has been taken to check the correctness of the

assertions made in what follows, in a project of this magnitude it is in-

evitable that there will be errors. For these I offer my apologies now. The

careful reader who does discover an error is invited to send the details to

david@optimalmatching.com. A list of corrections will be made available

via http://www.optimalmatching.com/AMUP.

DFM

Glasgow, October 2012

david@optimalmatching.com
http://www.optimalmatching.com/AMUP
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Foreword

Matching under preferences is a topic of great practical importance, deep

mathematical structure, and elegant algorithmics. The great practical im-

portance stems from the numerous applications such as the assignment of

students to universities, families to housing, kidney transplant patients to

donors, and so on. In these applications, the participants have preferences

over the outcomes and the goal is to find an assignment that optimises the

satisfaction of the participants. The importance of the area was recently

clearly demonstrated to the world-at-large by the award of the 2012 Nobel

Prize in Economics to Alvin Roth and Lloyd Shapley, partly for their work

on the stable marriage problem.

Instances may be very large. For example, in China, over 10 million

students apply for admission to higher education annually through a cen-

tralised process. Thus efficient algorithms are needed. In the past two

decades, matching under preferences has became a hot topic in algorithms

research with many new structural results, improved algorithms, and new

workshops dedicated to the area.

I can attest to the beauty of the subject from my own experience. After

hearing a talk by David Manlove on “Strong stability in the Hospitals /

Residents Problem” at the British Colloquium for Theoretical Computer

Science in 2003, I became interested in matching problems involving pref-

erences. Indeed, some of my results feature in what follows.

This book covers the research area in its full breadth and beauty. It

includes most of the recent results in a coherent presentation. Written

by one of the foremost experts in the area, it is a timely update to “The

Stable Marriage Problem: Structure and Algorithms” (D. Gusfield and

R.W. Irving, 1989).

This book will be required reading for anybody working on the subject;

it has a good chance of becoming a classic.

Kurt Mehlhorn

xiii
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been very valuable. Also Péter Biró has been a great source of advice

in connection with the decentralised algorithms covered in Sec. 2.6 and

Sec. 4.3.3. However I stress that any remaining errors are entirely my

responsibility.

I would also like to express my gratitude to Kurt Mehlhorn for kindly

agreeing to write the Foreword of this book, and for his support of this

project in its early stages.

Others who have helped in ways such as providing sources from the liter-

ature, answering my queries or commenting on draft sections, or providing

new observations (which are acknowledged again at the relevant points)

include Haris Aziz, Christine Cheng, Pavlos Eirinakis, Tamás Fleiner, Hal

Gabow, Dan Hirschberg, Chien-Chung Huang, Elena Inarra, Augustine

Kwanashie, Iain McBride, Eric McDermid, Patrick Prosser, Philip Roscoe,
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Chapter 1

Preliminary definitions,
results and motivation

1.1 Introduction

1.1.1 Remit of this book

1.1.1.1 Matching under preferences

This book is about computational problems that involve matching agents

to one another, subject to various criteria. Here, the term agent is used

loosely to mean any participant in a matching process, and could include

commodities in addition to human subjects. In many cases the agents form

two disjoint sets, and we seek to assign the agents in one set to those in

the other. Examples include assigning junior doctors to hospitals, pupils

to schools, kidney patients to donors, and so on.

We primarily focus on the case that a subset of the agents have ordinal

preferences over a subset of the others. That is, there is a notion of first

choice, second choice, third choice, etc. For example a school-leaver who

is applying for admission to university might rank in order of preference a

small subset (say 5) of all available universities. Likewise, the universities

might form a ranking of their applicants according to academic merit, and

possibly other criteria. We will not always insist that the preference lists

be strictly ordered: for example a school-leaver might have two universities

that are jointly ranked as first choice in her preference list.

Typically there are other constraints in addition to the preference lists:

for example, it is reasonable to assume that a school-leaver should not be

assigned to more than one university, and likewise a university might have

a capacity, indicating the maximum number of students that it could admit

in a particular academic session.

1
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2 Preliminary definitions, results and motivation

1.1.1.2 Free-for-all markets

Applications of matching problems involving ordinal preferences (hence-

forth the term ordinal preferences will be shortened to preferences) can be

very large in practice. For example in 2011, 140,953 students applied for

admission to higher education in Hungary [90]. Economists have identified

several problems that arise in free-for-all markets, in which the agents are

able to negotiate with one another directly in order to arrange assignments

[518, 467].

These problems include unravelling in which agents form assignments

with one another earlier and earlier in advance of the deadline by which

all assignments must be fixed. For example, hospitals wishing to recruit

the best applicants might compete with one another by advancing the date

when they make their offers. To avoid this issue, agents might be prevented

from entering into premature assignments before a certain date.

This can then lead to the problem of congestion, in which agents do not

have sufficient time to negotiate with one another over potential assign-

ments prior to the deadline. For example a hospital h offering 20 places to

applicants might have to make substantially more than 20 offers, to allow

for applicants who will turn down h’s offer.

In an effort to avoid congestion, a new problem might emerge, namely

exploding offers . In such a case, agents are given only a short time period

to decide whether they are able to form a given assignment, otherwise the

potential for making that assignment is removed. For example hospital h

might force an applicant r to make a decision swiftly by setting r a dead-

line, beyond which the offer expires. Unravelling, congestion and exploding

offers lead to a situation in which agents might be forced into forming an

assignment with one another before they have knowledge of the whole range

of potential assignments that may potentially be available to them.

Prior to 1952, the assignment of junior doctors to hospitals in the USA

was carried out by a free-for-all market. A detailed description of the prob-

lems that this led to (which included unravelling, congestion and exploding

offers as described above), with reference to this particular application, has

been given in several references in the literature [261, 514, 518, 467].

1.1.1.3 Centralised matching schemes

Centralised matching schemes (referred to as (centralised) clearinghouses

by economists) can avoid some of the problems that are inherent in free-for-

all markets. These work along the following lines: the input data involving
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the agents and their preferences over one another are collected by a given

deadline by a trusted central authority. This third party then computes an

optimal matching with respect to the supplied preference lists and capac-

ities, and any other problem-specific constraints. By participating in the

process, the agents agree that the outcome is binding. The precise defini-

tion of an optimal matching has many variations depending on the context,

but it could involve, for example, maximising the number of places that

are filled at each hospital, or giving the maximum number of school-leavers

their first-choice university, or ensuring that no junior doctor and hospital

have an incentive to reject their assignees and become matched together, if

they were not already assigned to one another.

Centralised matching schemes are often given a name that is an um-

brella term for the entire administrative and algorithmic process of data

collection, computation of a matching and publication of the outcome. For

example the assignment of junior doctors to hospitals in the US is han-

dled by the National Resident1 Matching Program (NRMP) [498, 602]. In

2012, 38,777 aspiring residents applied via the NRMP for 26,772 available

residency positions [602]. The previous subsection indicated that higher

education admission in Hungary typically involves an even larger number

of applicants.

Due to the potential size of the applications in practice, it is usually

infeasible to compute optimal allocations by hand. Centralised matching

schemes automate this task by employing algorithms to compute optimal

matchings based on the input data supplied by the participants. Our inter-

est is in the design and analysis of efficient (polynomial-time) algorithms for

the matching problems that underpin these centralised matching schemes,

and in proving results about the non-existence of such algorithms where

appropriate. In order to derive these theoretical results it is important to

arrive at formal models of the underlying matching problems. This book

organises its presentation around a systematic classification of matching

problems according to the nature of the agents who are participating, the

form of the preference information that they provide, and the criteria that

constitute the definition of an optimal matching.

1Resident is the US term for a newly-graduated medical student who is undertaking
their first period of supervised postgraduate medical practice before full registration as
a junior doctor is granted.
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1.1.2 The matching problems under consideration

1.1.2.1 Classification of matching problems

The matching problems that we consider in this book can be fairly com-

prehensively classified as follows:

(1) Bipartite matching problems with two-sided preferences . Here the par-

ticipating agents can be partitioned into two disjoint sets, and each

member of one set ranks a subset of the members of the other set

in order of preference. Example applications include assigning junior

doctors to hospitals [596,602–604], pupils to schools [1,2,4] and school-

leavers to universities [64, 77, 111, 491].

(2) Bipartite matching problems with one-sided preferences. Again the par-

ticipating agents can be partitioned into two disjoint sets, but this time

each member of only one set ranks a subset of the members of the

other set in order of preference. Example applications include campus

housing allocation [142, 474], DVD rental markets [19] and assigning

reviewers to conference papers [242].

(3) Non-bipartite matching problems with preferences . Here the participat-

ing agents form a single homogeneous set, and each agent ranks a subset

of the others in order of preference. Example applications include form-

ing pairs of agents for chess tournaments [401], finding kidney exchanges

involving incompatible patient–donor pairs [511, 512, 17, 513, 423] and

creating partnerships in P2P networks [232, 233, 403, 429–431].

In the following subsections we describe informally some of the key match-

ing problems that belong to each part of the above classification. Formal

definitions of the problem models will be given in later sections of the chap-

ter. We will also expand on the applications mentioned above in greater

detail later in this chapter.

1.1.2.2 Bipartite matching problems with two-sided preferences

The classical Stable Marriage problem (sm) [235, 261] (defined formally in

Sec. 1.3.4.1) is the central matching problem in this class. An instance of

this problem comprises a set of men and women, and each person ranks

each member of the opposite sex in strict order of preference.

A many–one generalisation of sm is the Hospitals / Residents prob-

lem (hr) [235, 261] (defined formally in Sec. 1.3.2), where each man cor-

responds to a resident and each woman corresponds to a hospital which
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can potentially be assigned multiple residents up to some fixed capacity.

hr models the assignment of junior doctors to hospitals and many other

related applications.

Other generalisations of hr that belong to this class are the Workers /

Firms problem (wf) and the Student–Project Allocation problem (spa) —

see Sec. 5.4 and Sec. 5.5 for definitions of these problems.

In each of the problems in this class, the task is to find a stable matching.

Informally, a matching is a set pairs, each of which represents the assign-

ment of an agent from one set to an agent from the other, such that no

agent is assigned more agents than its capacity. A matching is stable if no

two agents prefer one another to one of their current assignees. Were such

a pair of agents to exist, they could undermine the matching by forming a

private arrangement outside of it.

Roth and his co-authors [498,503,504,518] have stressed the importance

of stability as a solution concept for matching problems in this class. Most

of our treatment of bipartite matching problems with two-sided preferences

will involve stability as the solution concept, but we will also consider al-

ternative optimality criteria in such settings.

1.1.2.3 Bipartite matching problems with one-sided preferences

The House Allocation problem (ha) (defined in Sec. 1.5.2) [301,595,5] is the

variant of sm in which the women do not have preference lists over the men.

The men are now referred to as applicants and the women are referred to

as houses . The problem name stems from the application where students

are assigned to campus housing, based on their preferences over the avail-

able accommodation. This is accomplished using a centralised matching

scheme in a number of universities including Carnegie-Mellon University,

Duke University, the University of Michigan, Northwestern University and

the University of Pennsylvania in the US [142], and the Technion in Israel

[474].

A many–one extension of ha, called the Capacitated House Allocation

problem (cha) arises when each house can accommodate multiple appli-

cants up to some fixed capacity. cha can also be regarded as the variant

of hr in which hospitals do not have preference lists over residents.

In the context of ha and cha, only applicants have preferences over

houses, so the notion of stability is not relevant. Other optimality cri-

teria have been formulated in the literature, including Pareto optimality,

popularity and profile-based optimality. Informally, a matching is Pareto
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optimal if there is no other matching in which some applicant is better off,

whilst no applicant is worse off. A matching is popular if there is no other

matching that is preferred by the majority of the applicants. Finally, the

profile of a matching M is a vector indicating the number of applicants with

their first, second and third choice, etc., in M . Optimising the profile of

M might, for example, involve maximising the number of applicants with

their first choice, and subject to this, maximising the number with their

second choice, etc.

1.1.2.4 Non-bipartite matching problems with preferences

The Stable Roommates problem (sr) (defined in Sec. 1.4.2) [235, 306, 261]

is the non-bipartite generalisation of sm in which each agent ranks all of

the others in strict order of preference. Stability is once again relevant in

this context, and the definition of a stable matching is a straightforward

extension of the definition in the sm case.

Many–many generalisations of sr have been considered in the literature

and are called the Stable Fixtures problem, the Stable Multiple Activities

problem and the Stable Allocation problem (see Sec. 4.8.4, Sec. 4.8.5 and

Sec. 4.8.6 respectively). Variants of sr have also been considered in which

agents can form partnerships into sets of size > 2 — this is the Coalition

Formation Game (see Sec. 4.8.8).

Most of our analysis of non-bipartite matching problems with prefer-

ences will involve stability as the solution concept, but there will also be

occasions when we will consider optimality criteria other than stability in

this context.

1.1.2.5 Further problem variants

The problem classes above include generalisations, restrictions and other

variations of the basic matching problems outlined. For example, in an

instance of hr, a large hospital with hundreds of applicants may not be

able to distinguish easily between all of them in order to arrive at a strictly-

ordered preference list. In particular, the hospital may wish to express

indifference in its list by grouping together batches of residents into ties

(see Sec. 1.3.5 for more details). This gives rise to a generalisation of hr.

One example of where a restriction of hr occurs is when we place con-

straints on the lengths of the preference lists. For example, in the context of

assigning school-leavers to universities, typically there are many available

universities, and applicants will not want to attend for interview at more
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than a certain number. This motivates the consideration of restrictions of

hr in which the preference lists of the residents are of bounded length.

A variant of hr arises when we alter the stability definition so that we

now require that there should be no pair of residents who could exchange

one another’s assigned hospitals so as to improve their outcome. Exchange-

stability covers this type of solution concept (see Sec. 5.7 for further details).

One important matching problem with ordinal preferences that does

not fit into the above classification is the three-dimensional variant of sm

(3dsm) in which there are three sets of agents (Knuth [394] suggested that

these could be considered to be men, women and dogs). Strictly speaking,

this problem would fit into an additional class entitled tripartite matching

problems with preferences . See 5.6 for further details concerning this class

of stable matching problem.

1.1.3 Existing literature on matching problems

1.1.3.1 Algorithms and complexity literature

Algorithmic aspects of matching problems involving ordinal preferences

have been extensively studied in the literature over the last few decades.

The seminal paper of Gale and Shapley [235] giving an algorithm for sm

was probably the earliest paper in this context. Between 1962, the date of

publication of Ref. [235], and 1989, most of the algorithmic effort centred

on stable matching problems, and in particular sm, hr, sr, 3dsm and their

variants. By contrast, algorithmic results for ha and cha are more recent,

and indeed most of those that we focus on in this book were formulated

within the last decade.

Donald Knuth’s interest in stable matching problems led to the publi-

cation in 1976 of a series of lecture notes in French on the topic, which were

later translated into English [394].

1989 saw the publication of Gusfield and Irving’s book, entitled “The

Stable Marriage problem: Structure and Algorithms” [261]. This gave a

deep insight into the underlying structure of the set of stable matchings in

instances of sm, hr and sr, and showed how this structure plays a vital

role in the derivation of efficient algorithms for problems such as generating

all stable matchings, and finding stable matchings with additional useful

properties.

The Encyclopedia of Algorithms [357], published in 2008, included a

range of entries relating to matching problems [120, 314, 315, 333, 361, 416,

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org
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450, 555]. Also in the same year, a short survey paper by Iwama and

Miyazaki was published [334].

As indicated in the preface, papers accepted to the MATCH-UP work-

shops held in 2008 and 2012 were published in two proceedings volumes

[266, 78], and a special issue of Algorithmica, published in 2010 [417], in-

cluded a selection of papers appearing in the 2008 workshop along with

other papers on matching under preferences.

Subsequently to 1989, a number of MSc and PhD theses relating to

matching under preferences have been published that involve a substantial

algorithmic focus [159, 201, 208, 14, 587, 523, 578, 470, 588, 535, 571, 15, 439,

483, 549].

1.1.3.2 Game theory and economics literature

The study of matching problems involving preferences belongs to an area

that economists refer to as matching theory [541]. Matching theory in turn

belongs to a sub-field of microeconomics called market design [397]. This

is concerned with applying game-theoretic techniques to design economic

institutions that avoid the kinds of market failures outlined in Sec. 1.1.1.2.

Economists tend to refer to a matching algorithm as a mechanism. They

are typically interested in strategy-proof or truthful mechanisms, which

make it a dominant strategy for the agents to reveal their true preferences

(see Sec. 2.9 where these terms are defined formally).

Roth and Sotomayor’s book [514], entitled “Two-sided matching: a case

study in game-theoretic modeling and analysis”, published shortly after

Gusfield and Irving’s monograph [261], studied sm and hr in depth, also

presenting structural results, but concentrating mainly on a game-theoretic

viewpoint. One of the key themes of the book was the investigation of

strategy-proof mechanisms for sm and hr.

Several surveys on matching theory have been written by economists

following the publication of Roth and Sotomayor’s monograph [514]. These

study problems such as sm, hr, sr and ha in the context of market design.

Survey papers include those by Roth and Sotomayor [515], Gale [234], Roth

[505], Niederle et al. [467], Sotomayor and Özak [547], Kojima and Troyan

[397], Sönmez and Ünver [541], and Abdulkadiroǧlu and Sönmez [8].

Increasingly, papers on matching theory and market design are appear-

ing in game theory conferences such as the quadrennial World Congress of

the Game Theory Society, and at annual meetings such as the International

Summer Festival on Game Theory at Stony Brook and the Spain–Italy–

Netherlands series of meetings on Game Theory.
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1.1.3.3 Algorithmic mechanism design literature

Computational social choice theory [150] addresses computational chal-

lenges arising in situations where multiple agents must reach a collective

decision that affects them all, and which may result in winners and losers.

Algorithmic mechanism design [468] is a sub-field of computational so-

cial choice theory involving the design of systems that take in users’ pref-

erences and produce outcomes based on those preferences. In general such

systems may involve monetary transactions, and issues of interest include

revenue raised, and social welfare. We are not concerned with monetary

payments, and therefore “social welfare” will usually refer to measurable

attributes that are derived from the ordinal preferences expressed by the

agents.

Algorithmic game theory [469] is a very broad field that is concerned

with computational questions arising in game-theoretic problems such as

finding equilibria, designing mechanisms with or without money, analysing

combinatorial auctions, load-balancing machines and routing data through

networks.

The algorithmic study of matching under preferences lies at the inter-

section of algorithmic game theory, computational social choice theory and

algorithmic mechanism design [495,541]. Increasingly, papers that are rele-

vant to the topic of this book are appearing in multi-disciplinary conferences

that solicit work at the intersection of these areas, such as EC (ACM Con-

ference on Electronic Commerce), COMSOC (the International Workshop

on Computational Social Choice), SAGT (the Symposium on Algorithmic

Game Theory) and WINE (the Workshop on Internet and Network Eco-

nomics).

1.1.4 Contribution of this book

1.1.4.1 General overview

Gusfield and Irving’s monograph [261] gave a very comprehensive account

of the state of the art for sm, hr and sr at the time of its publication. One

of the aims of this book is to update the reader on the many structural and

algorithmic results for these matching problems that have been published

subsequently to 1989. In doing so, we do not assume prior knowledge of

any definitions or results from Ref. [261]. All relevant notation, terminology

and key results for these problems will be given in this chapter, and hence

this book can be read independently of Ref. [261].
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This book should not, however, be considered merely as an update to

Ref. [261]. Our aim is to broaden the range of matching problems considered

to include many additional stable matching problems belonging to Classes

(1) and (3) in the classification of Sec. 1.1.2.1. We also cover problems in

Class (2), which were not part of the remit of Ref. [261].

1.1.4.2 Chapter outline

The book is divided into two main parts: Part 1, spanning Chaps. 2–5, deals

with stable matching problems in Classes (1) and (3). Part 2, spanning

Chaps. 6–8, focuses on other forms of optimality criteria mainly applied to

matching problems in Class (2), but also in instances of problems in Classes

(1) and (3).

In Part 1, Chap. 2 deals with the central stable matching problem,

namely sm, presenting key developments that have appeared in the liter-

ature following the publication of Gusfield and Irving’s monograph. We

provide updates to lists of open problems from Refs. [394,261], review two

important papers by Subramanian and Feder [551,202] and describe linear

and constraint programming approaches to sm, decentralised algorithms for

sm and some beautiful results concerning median stable matchings. Among

the many other results presented, we show how stable matching theory led

to a very elegant solution to the Dinitz conjecture [239].

The extensions of sm and hr in which preference lists can include ties

and other forms of indifference led to a substantial revival in the study of

stable matching problems in the late 1990s and early 2000s. In Chap. 3 we

describe algorithmic results for problems involving computing stable match-

ings in these contexts. One particular problem, namely that of finding a

stable matching that matches as many people as possible, given an instance

of sm where the preference lists may involve ties and may be incomplete,

has led to an interesting “race” to find the tightest, fastest and simplest

approximation algorithm.

sr, the non-bipartite version of sm, has traditionally been studied less

extensively than sm. However following the publication of [261], some

important structural and algorithmic results due to Tan were published

[556–559]. These guaranteed the existence of a so-called stable partition, a

generalisation of a stable matching, even in instances of sr that admit no

stable matching. We describe Tan’s results, and many other more recent

results for sr and its variants, in Chap. 4.
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Further results for stable matching problems are presented in Chap. 5.

We describe extensions of hr in which hospitals can have lower and/or

common quotas, which present additional constraints on the numbers of

assignees that they can/must obtain in a stable matching. We also consider

the variant of hr in which couples can provide joint preference lists in order

to be matched to hospitals that are geographically close to one another.

Other problems considered include spa, wf, 3dsm and exchange-stable

matching problems.

Part 2 is concerned with optimality criteria that can be defined for

matching problems in Class (2). These include Pareto optimality, popu-

larity and profile-based optimality. These criteria are mainly applied to

ha, cha and their variants, but are also studied in the context of sm, hr

and sr. Issues of interest in each case include the existence of an opti-

mal matching, the algorithmic complexity of finding an optimal match-

ing, and the structure of the set of optimal matchings in a given problem

instance. Generally speaking, Pareto-optimal and profile-based optimal

matchings are bound to exist, but there is no such guarantee in the case

of popular matchings. Results for Pareto optimal, popular and profile-

based optimal matchings are considered in Chap. 6, Chap. 7 and Chap. 8

respectively.

One of the purposes of this book is to stimulate further research in the

area of matching under preferences, and to this end we identify a range of

open problems for future investigation. These are presented in the conclud-

ing section of each chapter.

Finally, we remark that, given the range of matching problems consid-

ered, we do require to define many notational concepts throughout this

book. For the reader’s convenience we provide a Glossary of Symbols,

starting on Page 461.

1.1.4.3 What the book does not contribute

Due to the magnitude of the range of structural and algorithmic results for

matching problems involving preferences that are already within the scope

of this book, it has been necessary to omit certain topics. We briefly outline

these here.

Strategic results for matching problems. Although issues of strategy

in matching problems involving preferences are undoubtedly important, we

do not have the space in this book to comprehensively update the reader on

the wealth of results that have appeared subsequently to the publication of
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Roth and Sotomayor’s book [514], particularly those from the game theory

and economics literature. Instead, we confine our treatment to a short

section in Chap. 2 that focuses mainly on results that have appeared in the

algorithms and complexity literature (see Sec. 2.9).

Matching problems with cardinal utilities The focus of this book is

on ordinal preferences, and problems that are primarily based on optimising

a matching subject to some constraint involving cardinal utilities are not

considered.

In particular we do not consider matching problems with transferable

utility (sometimes called monetary transfer or payments) — such problems

have been referred to as TU games in the literature. These include problems

such as the Assignment Game [528], the Matching Game (c.f. [89]), the

Stable Roommates problem with Payments [79] (see also Refs. [196, 197,

224]) and the Permutation Game [570].

Matching problems with cardinal utilities such as the Assignment prob-

lem [230] and maximum weight matching in general graphs [223, 231] are

also not explicitly considered in their own right unless there is some con-

nection with ordinal preferences. More general packing problems such as

packing paths and/or cycles into directed or undirected graphs are also be-

yond the scope of this book. These include problems involving identifying

optimal sets of kidney “exchanges” (in such an exchange, a patient with a

willing but incompatible donor can “swap” her donor with that of another

patient in a similar position) where edge weights are derived from cardinal

utilities [511, 512, 17, 513, 423]. (We will however consider kidney exchange

problems in the context of ordinal preferences.)

It is often the case that ordinal preferences naturally arise from human

subjects who are participants of a centralised matching scheme and able to

arrive at a notion of first, second, third choice, etc. However there are some

interesting cases where quantitative, objective data do in fact give rise to

ordinal preferences, such as the following:

• Junior doctor allocation in Scotland (applicant “scores” based on aca-

demic performance and assessment of application forms give rise to ordi-

nal preferences for the hospitals) [309, 604].

• School choice in New York and Boston (children have “priorities” based

on factors such as whether they are in the walk zone and whether they

have siblings at the school already, and these priorities translate into

ordinal preferences for the schools) [2, 1, 4].
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• Higher education admission in Hungary (again, the academic perfor-

mance of the applicants gives rise to ordinal preferences on the part of

the universities) [77, 90].

• P2P networking (measures of download / upload bandwidth, latency and

storage capacity give rise to ordinal preferences of nodes in a communi-

cation network over their peers) [232, 233, 403, 429–431].

We finally remark that there are examples of matching problems that in-

volve both ordinal preferences and cardinal utilities, and these are within

the scope of this book. Examples include theminimum weight stable match-

ing problem [320] (see Sec. 1.3.4.1).

Proofs of results. Our aim is to provide as broad a coverage as possible

of the vast literature in the area of algorithmics of matching under prefer-

ences. We strive to give an equal balance to results contributed jointly or

solely by the author, and those due to other members of the community.

In doing so, we will in most cases omit proofs, referring the reader to the

relevant references for the full details. However in some cases we do present

proofs, generally for one or more of the following reasons: (i) the result is

new, and the proof has not been previously published; (ii) the result is

known, but an explicit proof has not been given in the literature, and we

provide one for completeness; (iii) the proof has already appeared in the

literature, but is reproduced (perhaps in a slightly different form) because

in the author’s opinion, the proof illustrates a general technique and it is

instructive to include it.

1.1.5 Outline of this chapter

In the remainder of this chapter we provide basic definitions of notation

and terminology and give key structural and algorithmic results that will

be required throughout subsequent chapters. Our presentation is organised

according to the problem areas of hr, sm, sr and ha and their variants.

In addition we review basic definitions and results concerning matchings in

graphs.

The remaining sections are organised as follows. In Sec. 1.2, we begin

with general matching concepts in graphs. Then key definitions and results

for hr are given in Sec. 1.3, including those for sm in Sec. 1.3.4, and then

those for sr in Sec. 1.4. This order allows us to arrive at many definitions

and results for sm that follow immediately from the fact that sm is a spe-

cial case of hr. Key results that were published after 1989 (the date of



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

14 Preliminary definitions, results and motivation

publication of Ref. [261]) are surveyed in later chapters. Finally, Sec. 1.5

covers important definitions and results for ha.

In each of Sec. 1.3, Sec. 1.4 and Sec. 1.5 we also give further motivation

for hr, sr and ha, describing some of their practical applications in more

detail.

1.2 Matchings in graphs

In this section we briefly review fundamental definitions, together with

structural and algorithmic results, concerning matchings in graphs. Let

G = (V,E) be an undirected graph, where n = |V | and m = |E|. A set

M ⊆ E is a matching in G if no two edges in M are adjacent in G. Let

M denote the set of matchings in G. A maximum cardinality matching

(usually shortened to a maximum matching henceforth where there is no

ambiguity) is a matching M ∈ M that maximises |M |. A matching M is

perfect if every vertex of G is incident to an edge of M .

Let M be an arbitrary matching in G. For any v ∈ V , if v is incident to

some member of M then we say that v is matched , otherwise v is exposed .

If {v, w} ∈ M then M(v) denotes w. If v is exposed then M(v) is unde-

fined. An alternating path P with respect to M is a simple path in G that

contains edges in M and not in M alternately. If the end-vertices of P are

exposed then M is an augmenting path. A fundamental structural result

for maximum matchings is Berge’s theorem2, as follows.

Theorem 1.1 ([476,71]). Let G be a graph and let M be a matching

in G. Then M is maximum if and only if M admits no augmenting

path.

Edmonds’ blossom-shrinking algorithm [183] is (essentially) based on re-

peatedly finding an augmenting path P relative to a given matching M ,

and augmenting along P (that is, replacing the edges in P ∩ M by the

edges in P\M 3) until no augmenting path remains. Then M is maximum

by Theorem 1.1. The fastest current implementation of Edmonds’ algo-

rithm is due to Micali and Vazirani [451, 577], as stated by the following

theorem.

2According to Korte and Vygen [400, p.244], this result had already been observed by
Petersen [476] and was rediscovered by Berge.
3The matching so obtained is the symmetric difference of M and P , denoted by M⊕P .
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Theorem 1.2 ([183,451,577]). A maximum matching in a graph G =

(V,E) can be found in O(
√
nm) time, where n = |V | and m = |E|.

In the case that G = (V,E) is a bipartite graph, the search for an aug-

menting path is simpler than for the non-bipartite case, and can be achieved

using a variant of breadth-first search (see e.g., Ref. [407] for further de-

tails). Hopcroft and Karp [281] established that a maximum matching in G

can be found in O(
√
nm) time, where n = |V | and m = |E| (their approach

is simpler than Micali and Vazirani’s algorithm for the non-bipartite case,

and also pre-dated it).

Hall’s Marriage Theorem [265] provides a necessary and sufficient con-

dition for G to admit a perfect matching. To describe this result, we require

some additional notation and terminology. A bipartition of G is a parti-

tion of V into disjoint sets U and W such that, for every edge e ∈ E,

|e∩U | = |e∩W | = 1. We denote such a bipartition of G by G = (U,W,E).

Given a vertex v ∈ V , define N(v) = {v′ ∈ V : {v, v′} ∈ E} to be the open

neighbourhood of v. Given V ′ ⊆ V , define N(V ′) =
⋃

v∈V ′ N(v).

Theorem 1.3 ([265]). Let G = (V,E) be a bipartite graph with biparti-

tion V = U ∪W . Then G has a maximum matching in which all vertices

in U are matched if and only if |N(U ′)| ≥ |U ′| for all U ′ ⊆ U . Moreover,

G has a perfect matching if and only if |U | = |W | and |N(U ′)| ≥ |U ′| for
all U ′ ⊆ U .

A second fundamental structural result in matching theory is the

Edmonds–Gallai Decomposition [183, 238] (see also Ref. [407, Theorem

3.2.1]). This is valid for general graphs, but has a particularly nice rep-

resentation in bipartite graphs, as observed by Dulmage and Mendelsohn

[174–176] (see also [407, Theorem 3.2.4])4. We will refer to the decompo-

sition in this case as the Dulmage–Mendelsohn Decomposition. We first

define the decomposition in bipartite graphs and then state its properties.

Definition 1.4 ([174,175,183,238,176]). Let G = (V,E) be a bipartite

graph, and let M be a maximum matching in G. The Dulmage–Mendelsohn

Decomposition is a partition of V into three disjoint5 sets, namely E, O,

and U , as follows. Vertices in E, O, and U are called even, odd and

4Lovász and Plummer [407] noted that Dulmage and Mendelsohn formulated their de-
composition for bipartite graphs prior to Edmonds and Gallai arriving at their structure
theorem for general graphs.
5That the sets are disjoint is established by Theorem 1.5.
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unreachable respectively. A vertex v ∈ V is even (respectively odd) if there

exists an alternating path of even (respectively odd) length to v from a vertex

that is exposed in M . If no such alternating path exists, v is unreachable.

We henceforth refer to this vertex labelling as an EOU labelling of V .

Theorem 1.5 ([183,238]). Let G = (V,E) be a bipartite graph, and let

M be a maximum matching in G. Let E, O, and U be the sets defined

relative to M in G by Definition 1.4. Then:

(i) E, O and U are pairwise disjoint. Moreover the EOU labelling of V is

independent of the particular choice of M .

(ii) M satisfies the following properties:

(a) every vertex in O ∪ U is matched;

(b) every vertex in O is matched to a vertex in E;
(c) every vertex in U is matched to another vertex in U ;
(d) |M | = |O|+ |U|/2.

(iii) M ∩ {{u, v} : u ∈ O ∧ v ∈ O ∪ U} = ∅.
(iv) E ∩ {{u, v} : u ∈ E ∧ v ∈ E ∪ U} = ∅.

A graph G = (V,E) is capacitated if there is a function c : V −→
Z
+. An assignment M in G is a subset of E. Given any v ∈ V , define

M(v) = {w : {v, w} ∈ M}. A matching M is an assignment such that

|M(v)| ≤ c(v) for all v ∈ V . A maximum matching is a matching M in G

that maximises |M |. The problem of finding a maximum matching in G is

also called the Upper Degree Constrained Subgraph problem (udcs) [226].

Gabow [226] showed that this problem can be solved in O(
√
Cm) time,

where C =
∑

v∈V c(v).

Now suppose that G = (V,E) is a capacitated bipartite graph. Let

V = U ∪ W be a bipartition of G. In general, the time complexity of

Gabow’s algorithm is in fact O(
√
βm), where β is the size of a maximum

matching in G [226]. This leads to the following observation about the

algorithm’s complexity in a special kind of capacitated bipartite graph.

Theorem 1.6 ([226]). Let G = (V,E) be a capacitated bipartite graph,

and let V = U ∪ W be a bipartition of G. Suppose that c(u) = 1 for all

u ∈ U . Then a maximum matching in G can be found in O(
√
n1m) time6,

where n1 = |U | and m = |E|.
6In Refs. [425, 470, 535], the weaker upper bound of O(

√
Cm) was given as the com-

plexity of Gabow’s algorithm for this restricted type of capacitated bipartite graph.
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A counterpart to a maximum matching is a minimum maximal match-

ing, which we now define. Let G = (V,E) be an arbitrary graph. A match-

ing M in G is maximal if M ∪ {e} is not a matching, for every e ∈ E\M .

A minimum maximal matching is a maximal matching of minimum size.

Clearly a maximum matching is maximal. A maximal matching can be

found by a simple greedy algorithm (pick an edge at random and delete all

of its neighbours, and iterate this process until no edges remain). However

the only guarantee regarding the cardinality of the matching M produced

by this algorithm is that it is within a factor of 2 of the size of a maximum

matching. Indeed, M is trivially within a factor of 2 of the size of a mini-

mum maximal matching also, since any two maximal matchings in G differ

in size by at most a factor of 2 [399].

In constrast to the maximisation problem, the problem of finding a

minimum maximal matching in G is NP-hard even in some very restricted

cases [590,282,165]. To describe these, define min mm-d to be the problem

of deciding, given a graph G and integer K, whether G admits a maximal

matching of size at most K.

Theorem 1.7. min mm-d is NP-complete. The result holds even for bi-

partite graphs [590] 7, for subdivision graphs8 of cubic graphs [282], and for

bipartite k-regular graphs, for k ≥ 3 [165].

1.3 The Hospitals / Residents problem (hr)

1.3.1 Introduction

In this section we present definitions and fundamental results relating to

the Hospitals / Residents problem (hr) and its variants. Key definitions

are given in Sec. 1.3.2, and important results appearing in the literature up

to 1989 are presented in Sec. 1.3.3. The 1–1 restriction of hr known as the

Stable Marriage problem is discussed in Sec. 1.3.4. Variants of hr involving

indifference are described in Sec. 1.3.5. Some additional important variants

7In fact Yannakakis and Gavril proved that min eds-d is NP-complete for this class
of graphs. min eds-d is the problem of determining, given a graph G = (V, E) and an
integer K, whether G contains an edge dominating set (i.e., a set of edges S such that
every edge in E\S is adjacent to some edge in S) of size at most K. min mm-d and min
eds-d are polynomially equivalent; indeed the size of a minimum maximal matching in
G is equal to the size of a minimum edge dominating set of G [590].
8Given a graph G, the subdivision graph of G, denoted by S(G), is obtained by sub-

dividing each edge {u,w} of G in order to obtain two edges {u, v} and {v, w} of S(G),
where v is a new vertex.

www.allitebooks.comwww.allitebooks.com
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of hr are outlined in Sec. 1.3.6. Finally, Sec. 1.3.7 describes practical

motivation for hr.

1.3.2 Key definitions

The Hospitals / Residents problem (hr) [235, 261, 514, 416] (sometimes re-

ferred to as the College (or University or Stable) Admissions problem, or

the Stable Assignment problem) was first defined by Gale and Shapley in

their seminal paper “College Admissions and the Stability of Marriage”

[235], referred to there as the College Admissions problem.

An instance I of hr involves a set R = {r1, . . . , rn1
} of residents and

a set H = {h1, . . . , hn2
} of hospitals . Each hospital hj ∈ H has a positive

integral capacity, denoted by cj , indicating the number of posts that hj

has. Also there is a set E ⊆ R × H of acceptable resident–hospital pairs.

Each resident ri ∈ R has an acceptable set of hospitals A(ri), where

A(ri) = {hj ∈ H : (ri, hj) ∈ E}.

Similarly each hospital hj ∈ H has an acceptable set of residents A(hj),

where

A(hj) = {ri ∈ R : (ri, hj) ∈ E}.

The agents in I are the residents and hospitals in R ∪ H . Each agent

ak ∈ R∪H has a preference list in which she/it ranks A(ak) in strict order.

Given any resident ri ∈ R, and given any hospitals hj , hk ∈ H , ri is said to

prefer hj to hk if (ri, hj) ∈ E and (ri, hk) ∈ E, and hj precedes hk on ri’s

preference list; the prefers relation is defined similarly for a hospital. Let

C =
∑

hj∈H cj and let m = |E|.
An assignment M is a subset of E. If (ri, hj) ∈ M , ri is said to be

assigned to hj , and hj is assigned ri. For each ak ∈ R ∪ H , the set of

assignees of ak in M is denoted by M(ak). If ri ∈ R and M(ri) = ∅, ri is
said to be unassigned , otherwise ri is assigned . Similarly, a hospital hj ∈ H

is undersubscribed , full or oversubscribed according as |M(hj)| is less than,
equal to, or greater than cj , respectively.

A matching M is an assignment such that |M(ri)| ≤ 1 for each ri ∈ R

and |M(hj)| ≤ cj for each hj ∈ H (i.e., no resident is assigned to an

unacceptable hospital, each resident is assigned to at most one hospital,

and no hospital is oversubscribed). For notational convenience, given a

matching M and a resident ri ∈ R such that M(ri) 6= ∅, where there is no

ambiguity the notation M(ri) is also used to refer to the single member of



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

1.3. The Hospitals / Residents problem (hr) 19

the set M(ri). We will also use this abbreviation occasionally in connection

with a hospital hj of capacity 1. We now present the stability definition for

hr.

Definition 1.8. Let I be an instance of hr and let M be a matching in

I. A pair (ri, hj) ∈ E\M blocks M , or is a blocking pair for M , if the

following conditions are satisfied relative to M :

(1) ri is unassigned or prefers hj to M(ri);

(2) hj is undersubscribed or prefers ri to at least one member of M(hj) (or

both).

M is said to be stable if it admits no blocking pair.

Given an instance I of hr, we are interested in the problem of finding

a stable matching in I.

We will find the following notation and terminology useful: a resident–

hospital pair (ri, hj) is stable if it belongs to some stable matching in I; in

this case, ri is a stable partner of hj and vice versa. A resident–hospital

pair is called a fixed pair if it belongs to every stable matching in I. Also

the underlying graph of an instance I of hr is a capacitated bipartite graph

〈G, c〉, such that G = (V,E) and c : R ∪H −→ Z
+, where V = R ∪H , E

is as defined above9, c(ri) = 1 for all ri ∈ R and c(hj) = cj for all hj ∈ H .

Given a resident ri ∈ R and a hospital hj ∈ A(ri), we define the rank of hj

in ri’s list, denoted by rank(ri, hj), to be 1 plus the number of hospitals

that ri prefers to hj . The rank of ri in hj ’s list, denoted by rank(hj , ri), is

defined similarly.

1.3.3 Key results (up to 1989)

Gale and Shapley [235] showed that every instance I of hr admits at least

one stable matching. Their proof of this result was constructive, i.e., they

described a linear-time algorithm for finding a stable matching in I.

The algorithm described by Gale and Shapley for hr is known as the

resident-oriented Gale–Shapley algorithm (or RGS algorithm for short)10,

9Following convention in the literature, in a given hr instance, the acceptable pairs, and
hence the edges in G, are represented by ordered (resident,hospital) pairs, even though G
is strictly speaking undirected. The same is true for other bipartite matching problems
considered in this book.
10Gale and Shapley described their algorithm in terms of rounds, during each of which
all unassigned residents simultaneously propose (or apply) to the highest hospital on
their list that has not already rejected them. McVitie and Wilson [445, 446] observed
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since it involves residents applying to hospitals, The RGS algorithm ter-

minates with the unique resident-optimal stable matching, in which each

assigned resident has the best hospital that she could achieve in any sta-

ble matching, whilst each unassigned resident is unassigned in every stable

matching [235] (see also [261, Sec. 1.6.3]). Using a suitable choice of data

structures (extending those described in Ref. [261, Sec. 1.2.3]), the RGS

algorithm can be implemented to run in O(m) time (recall that m is the

number of acceptable resident–optimal pairs). We summarise these obser-

vations as follows.

Theorem 1.9 ([235,261]). Given an instance of hr, the RGS algorithm

constructs, in O(m) time, the unique resident-optimal stable matching,

where m is the number of acceptable resident–hospital pairs.

The resident-optimal stable matching Ma is worst-possible for the hospitals

in a precise sense: if M is any other stable matching then every hospital

hj ∈ H prefers each resident in M(hj) to each resident in Ma(hj)\M(hj)

[261, Sec. 1.6.5].

A counterpart of the RGS algorithm, known as the hospital-oriented

Gale–Shapley algorithm, or HGS algorithm for short, involves hospitals of-

fering posts to residents. The HGS algorithm terminates with the unique

hospital-optimal stable matching. In this matching, every full hospital

hj ∈ H is assigned its cj best stable partners, whilst every undersubscribed

hospital is assigned the same set of residents in every stable matching [261,

Sec. 1.6.2]. Again, the HGS algorithm can be implemented to run in O(m)

time. We obtain the following counterpart of Theorem 1.9.

Theorem 1.10 ([261]). Given an instance of hr, the HGS algorithm

constructs, in O(m) time, the unique hospital-optimal stable matching,

where m is the number of acceptable resident–hospital pairs.

In the hospital-optimal stable matching Mz, each assigned resident has the

worst hospital that she could achieve in any stable matching, whilst each

unassigned resident is unassigned in every stable matching [261, Theorem

1.6.1]. Note that the RGS / HGS algorithms are often referred to as deferred

acceptance algorithms by economists [505].

that each round can consist of a single resident proposing (or applying) to a hospital.
Indeed, most expositions of the Gale–Shapley algorithm in the literature implicitly adopt
McVitie and Wilson’s modification without explicit reference to Refs. [445, 446].
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In general there may be other stable matchings — possibly exponentially

many [319] — between the two extremes given by the resident-optimal and

hospital-optimal stable matchings. However some key structural properties

hold regarding unassigned residents and undersubscribed hospitals with

respect to all stable matchings in I, as follows.

Theorem 1.11 (“Rural Hospitals” Theorem [498,237,502]). For

a given instance of hr, the following properties hold:

(i) the same residents are assigned in all stable matchings;

(ii) each hospital is assigned the same number of residents in all stable

matchings;

(iii) any hospital that is undersubscribed in one stable matching is assigned

exactly the same set of residents in all stable matchings.

Additional background to the Rural Hospitals Theorem for hr is given in

Ref. [261, Sec. 1.6.4].

A classical result in stable matching theory states that, for a given

instance of the Stable Marriage problem (see Sec. 1.3.4), the set of stable

matchings forms a distributive lattice (Knuth [394] attributes this result

to John Conway; see also Ref. [261, Sec. 1.3.1]). In fact such a structure

is also present for the set of stable matchings in a given instance I of

hr [261, Sec. 1.6.5]. Before describing this structure, we require to define

some preliminary notation and terminology. Let S denote the set of stable

matchings in I and letM,M ′ ∈ S. We say that ri ∈ R prefers M toM ′ if ri
is assigned in both M and M ′, and ri prefers M(ri) to M ′(ri). Also, we say

that ri is indifferent between M and M ′ if either (i) ri is unassigned in both

M and M ′, or (ii) ri is assigned in both M and M ′, and M(ri) = M ′(ri).

Given these definitions, we can define a natural dominance partial order

on the set of stable matchings as follows.

Definition 1.12. Let I be an hr instance and let S be the set of stable

matchings in I. Given M,M ′ ∈ S, we say that M dominates M ′, denoted

M � M ′, if each resident either prefers M to M ′, or is indifferent between

them.

We denote by M ∧ M ′ (respectively M ∨ M ′) the set of resident-hospital

pairs in which either (i) ri is unassigned if she is unassigned in both M and

M ′, or (ii) ri is given the better (respectively poorer) of her partners in M

and M ′ if she is assigned in both stable matchings. It turns out that each

of M ∧M ′ and M ∨M ′ is a stable matching in I, representing the join and
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the meet of M and M ′ respectively [261, Sec. 1.6.5]. These operations give

rise to a lattice structure for S, as the following result indicates.

Theorem 1.13 ([261]). Let I be an instance of hr, and let S be the set

of stable matchings in I. Then (S,�) forms a distributive lattice, with

M ∧M ′ representing the meet of M and M ′, and M ∨M ′ the join, for two

stable matchings M,M ′ ∈ S, where � is the dominance partial order on S
as defined in Definition 1.12.

1.3.4 The Stable Marriage problem (sm)

In this section we present fundamental definitions and results for the Stable

Marriage problem, in Secs. 1.3.4.1 and 1.3.4.2 respectively. Due to their

importance, we provide definitions and results relating to rotations, a key

structural concept in the context of sm), in a separate section (namely

Sec. 1.3.4.3).

1.3.4.1 Key definitions

The Stable Marriage problem with Incomplete lists (smi) [235,394,261,514,

315] is an important special case of hr in which cj = 1 for all hj ∈ H —

in this case, the residents and hospitals are more commonly referred to as

the men and women, and we denote these sets by U = {m1, . . . ,mn1
} and

W = {w1, . . . , wn2
} respectively.

Without loss of generality, in an instance of smi, we assume that n1 =

n2 = n, i.e., the numbers of men and women are equal (for if not, we may

simply add additional men or women as appropriate, each with an empty

preference list, until the number of men equals the number of women). We

define the size of a given instance to be the number of men, which is equal

to the number of women, given the previous sentence.

The notation and terminology given for hr in Sec. 1.3.2 immediately

carry over to the smi case. For emphasis, however, we define a blocking pair

in the smi case as follows. A pair (mi, wj) ∈ E\M blocks a matching M ,

or is a blocking pair for M , if the following conditions are satisfied relative

to M :

(1) mi is unassigned or prefers wj to M(mi);

(2) wj is unassigned or prefers mi to M(wj).

A matching M is said to be stable if it admits no blocking pair.
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The classical Stable Marriage problem (sm) [235, 394, 261, 514, 315] is

the special case of smi in which E = U × W (that is, each man finds

every woman acceptable, and vice versa). sm was first studied by Gale and

Shapley [235].

Now let I be an instance of smi and let M be a stable matching in

I. Define UM (respectively WM ) to be the set of men in U (respectively

women in W ) who are assigned in M . We define the regret of M to be:

r(M) = max
ai∈UM∪WM

rank(ai,M(ai)).

We say that M is a minimum regret stable matching if r(M) is minimum

over all stable matchings in I.

We now define the cost of M for the men to be

cU (M) =
∑

mi∈UM

rank(mi,M(mi)).

We define the cost of M for the women, denoted cW (M), similarly. Given

these two definitions, we define the cost of M to be c(M) = cU (M)+cW (M).

We say that M is an egalitarian stable matching if c(M) is minimum over

all stable matchings in I.

We define the sex-equality measure of M to be

d(M) = cU (M)− cW (M).

We say that M is a sex-equal stable matching if |d(M)| is minimum over

all stable matchings in I.

Finally suppose that each man mi ∈ U has a positive real-numbered

weight wt(mi, wj) for each woman wj that he finds acceptable, and suppose

that each woman does likewise. We assume that mi prefers wj to wk if and

only if wt(mi, wj) < wt(mi, wk) (and similarly for the women). Now let

ai ∈ UM ∪WM . We define the weight of ai with respect to M , denoted by

wtM (ai), to be wt(ai,M(ai)). We define the weight of M to be

wt(M) =
∑

ai∈UM∪WM

wtM (ai).

Then a stable matching M in I is of minimum weight if wt(M) is minimum,

taken over all stable matchings in I (such a matching is referred to as opti-

mal in Ref. [261]). Clearly, in the case that wt(mi, wj) = rank(mi, wj) and

wt(wj ,mi) = rank(wj ,mi) for each acceptable pair {mi, wj}, a minimum

weight stable matching is an egalitarian stable matching.
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1.3.4.2 Key results (up to 1989)

Clearly the key results mentioned in Sec. 1.3.3 apply to smi (and hence sm),

since smi is a special case of hr. Here we state some additional results for

smi that do not follow from those in Sec. 1.3.3.

Theorem 1.14. Let I be an instance of smi of size n, where m is the

number of acceptable pairs. Then:

(i) A minimum regret stable matching in I can be found in O(m) time

[259].

(ii) An egalitarian stable matching in I can be found in O(m2) time [320,

261].

(iii) A minimum weight stable matching in I can be found in O(m2 logn)

time [320,261].

We remark that faster algorithms for (ii) and (iii) are reviewed in Sec. 2.2.10.

The following straightforward result establishes a close relationship be-

tween sm and smi. Its proof is included for completeness since it does not

appear to have been explicitly given in the literature previously, although

the result itself can probably be attributed to “folklore”.

Proposition 1.15. Let I be an instance of smi with n1 men and n2 women.

Then there exists an instance I ′ of sm of size n, where n = max{n1, n2},
such that the stable matchings in I are in 1–1 correspondence with the stable

matchings in I ′.

Proof. Suppose that the men and women in I are given by U =

{m1, . . . ,mn1
} and W = {w1, . . . , wn2

} respectively. Without loss of gen-

erality assume that n1 ≤ n2 and let n = n2. Let I ′ comprise the men in

U ∪ U ′ and the women in W , where U ′ = {mn1+1, . . . ,mn}. In I ′, each

person in U ∪W initially has his/her preference list in I, whilst each man

in U ′ initially has an empty list. Given any man mi ∈ U ∪U ′, if Wi denotes

the set of women initially on his list in I ′, append the women in W\Wi

to his list in I ′ in increasing indicial order. Similarly, given any woman

wj ∈ W , if Uj denotes the set of men initially on her list in I ′, append the

men in (U ∪ U ′)\Uj to her list in I ′ in increasing indicial order. We claim

that the stable matchings in I and I ′ are in 1–1 correspondence.

For, let M be a stable matching in I. Let UM = {mj1 , . . . ,mjp} and

WM = {wk1
, . . . , wkq

} denote the sets of men and women respectively who

are unassigned in M as a matching in I. Then p + n2 − n1 = q. Let mjr
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denote mn1+r−p (p + 1 ≤ r ≤ q), and let M ′′ = {(mjr , wkr
) : 1 ≤ r ≤ q}.

Then M ∪ M ′′ is stable in I ′. Conversely suppose that M ′ is a stable

matching in I ′. Then M ′ ∩ (U ×W ) is stable in I. It is also not difficult to

see that this correspondence is 1–1. �

1.3.4.3 Rotations

Let I be an instance of smi and let M be a stable matching in I. Given any

man mi ∈ UM in I, let sM (mi) denote the most-preferred woman wj on

mi’s list such that wj ∈ WM and wj prefers mi to M(wj). Let nextM (mi)

denote M(sM (mi)). Then a rotation (exposed) in M is a sequence ρ =

(mi0 , wj0 ), . . . , (mir−1
, wjr−1

) of pairs such that, for each k (0 ≤ k ≤ r− 1),

(mik , wik) ∈ M and mi+1 = nextM (mi), where (here and henceforth in

connection with rotations) addition is taken modulo r.

Let ρ be a rotation exposed in a matching M . The elimination of ρ

from M , denoted M/ρ, is defined to be the following matching:

M/ρ = (M\{(mik , wik) : 0 ≤ k ≤ r − 1}) ∪ {(mik , wik+1
) : 0 ≤ k ≤ r − 1}.

A key result [261, Lemma 2.5.2] is that M/ρ is a stable matching that

is dominated by M (under the partial order � defined in Definition 1.12).

Moreover if M is any stable matching other than the woman-optimal stable

matching Mz, then there is at least one rotation exposed in M [261, Lemma

2.5.3].

A pair (mi, wj) is a stable pair if and only if (mi, wj) ∈ Mz, or (mi, wj)

belongs to some rotation in I [261, Theorem 2.5.6].

A partial order ⊳ is defined on the set of rotations R(I) as follows: ρ⊳σ

if and only if, starting from the man-optimal stable matchingMa, ρmust be

eliminated to give a stable matching in which σ is exposed. The rotations

under ⊳ form the rotation poset (R(I),⊳) for I. A subset S of R(I) is

closed if, whenever ρ is in S, so also is every rotation σ such that σ ⊳ ρ.

The rotation digraph D(I) (see Ref. [261, p.105] for the formal definition of

D(I)) is an efficient representation of (R(I),⊳) that may be constructed in

O(n2) time, where n is the size of I; the transitive closure of the rotation

digraph D(I) is precisely the rotation poset (R(I),⊳).

The following theorem encapsulates the relationship between the rota-

tion poset and the set of all stable matchings in I.

Theorem 1.16 ([319,261]). Let I be an instance of smi. There is a 1–1

correspondence between the stable matchings in I and the closed subsets of

the rotation poset of I.
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Exploitation of the rotation poset gives rise to the following algorithmic

results for smi:

Theorem 1.17 ([259,261]). Let I be an instance of smi of size n, where

m is the number of acceptable pairs in I. Then:

(i) The stable pairs in I can be found in O(m) time.

(ii) The rotations in I can be found in O(m) time.

(iii) The stable matchings in I can be listed in O(n) time per matching,

after O(m) pre-processing time.

Many further structural and algorithmic results for sm, especially those

that appeared in the literature subsequently to the publication of Gusfield

and Irving’s book [261] are presented in Chap. 2.

1.3.5 The Hospitals / Residents problem with indifference

The National Resident Matching Program in the US (mentioned in

Sec. 1.1.1.3), the Canadian Resident Matching Service [603] and the Scot-

tish Foundation Allocation Scheme [604] handle the assignment of gradu-

ating medical students to junior doctor appointments in hospitals in their

respective countries. At the heart of these matching schemes are efficient

algorithms that essentially solve some variant of the Hospitals / Residents

problem (hr). In large-scale matching schemes of this kind, participants,

particularly large popular hospitals, may not be able to provide a genuine

strict preference order over what may be a very large number of applicants,

and may prefer to express indifference in their preference lists.

The most general form of indifference can be modelled by the Hospi-

tals / Residents problem with Partially-ordered lists (hrp). An instance

I of hrp is defined similarly to an instance of hr (see Sec. 1.3.2), except

that instead of preference lists, each resident ri ∈ R has a preference poset

≺ri⊆ A(ri) × A(ri), and similarly each hospital hj ∈ H has a preference

poset ≺hj
⊆ A(hj)×A(hj). We say that a resident ri ∈ R prefers hj to hk

if hj ≺ri hk; the prefers relation is defined similarly for a hospital. Also

we say that a resident ri ∈ R is indifferent between hj and hk, denoted by

hj ∼ri hk, if {hj , hk} ⊆ A(ri), hj 6≺ri hk and hk 6≺ri hj . The ∼hj
relation

is defined similarly for a hospital hj ∈ H . The notation and terminology

corresponding to the extension of the prefers and indifferent between re-

lation to matchings (e.g., ri prefers M to M ′, etc.) can be defined in an

analogous way to the corresponding definitions in Sec. 1.3.3.
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If ∼ak
is transitive for each agent ak ∈ R∪H , we obtain an instance of

the Hospitals / Residents problem with Ties (hrt). Here each equivalence

class under ∼ak
is referred to as a tie, and ak has a linear order over the

equivalence classes of A(ak) under ∼ak
. Intuitively, in an instance of hrt,

each agent ak ranks its acceptable partners in tied batches (where a tie

can be of length 1), ak is indifferent between the members of each tie, and

prefers each member of a given tie to each member of any successor tie.

We more commonly refer to preference lists again in this context, rather

than preference posets. For any acceptable resident–hospital pair (ri, hj),

rank(ri, hj) and rank(hj , ri) are defined as in the hr case.

The concept of indifference can, of course, be applied to instances of

sm. The Stable Marriage problem with Partially ordered and Incomplete

lists (denoted by smpi) is the restriction of hrp in which each hospital has

capacity 1, and the Stable Marriage problem with Partially ordered lists

(denoted by smp) is the restriction of smpi in which all man-woman pairs

are acceptable. Analogously, the Stable Marriage problem with Ties and

Incomplete lists (denoted by smti) is the 1–1 restriction of hrt. Finally,

the Stable Marriage problem with Ties (denoted by smt) is the special

case of smti [261, 332, 414, 419, 333] in which every man–woman pair is an

acceptable pair.

Three natural stability criteria were defined for smt [261,308], and these

definitions were generalised first to smti [414] and then to hrp [326, 328].

These criteria define three levels of stability in such instances, called weak

stability, strong stability and super-stability. For full generality, we now

define these terms in the context of hrp.

Given a matching M in an instance I of hrp, a pair (ri, hj) ∈ E\M is

said to block M , or to be a blocking pair of M if the following conditions

are satisfied depending on the desired level of stability:

• weak stability:

(i) ri is unassigned or prefers hj to her assigned hospital in M , and

(ii) hj is undersubscribed or prefers ri to its worst assigned resident in M ;

• strong stability: either (i)

(a) ri is unassigned or prefers hj to her assigned hospital in M , and

(b) hj is undersubscribed or prefers ri to its worst assigned resident in M

or is indifferent between them;

or (ii)

(a) ri is unassigned or prefers hj to her assigned hospital in M or is

indifferent between them, and

www.allitebooks.comwww.allitebooks.com
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February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

28 Preliminary definitions, results and motivation

Men’s preferences Women’s preferences
m1 : (w2 w3) w1 w1 : m1 (m2 m3)
m2 : (w1 w3) w2 w2 : m2 (m1 m3)
m3 : (w1 w2) w3 w3 : m3 (m1 m2)

Fig. 1.1 An instance of smt

(b) hj is undersubscribed or prefers ri to its worst assigned resident in M ;

• super-stability:

(i) ri is unassigned or prefers hj to her assigned hospital in M or is

indifferent between them, and

(ii) hj is undersubscribed or prefers ri to its worst assigned resident in M

or is indifferent between them.

Note that, in the context of hrp, a worst assigned resident of a hospital

hj ∈ H is any ri ∈ M(hj) such that there is no rk ∈ M(hj) satisfying

ri ≺hj
rk. M is said to be be weakly stable, strongly stable or super-stable

if it admits no blocking pair with respect to the relevant definition above.

Clearly a super-stable matching is strongly stable, and a strongly stable

matching is weakly stable. Also, if the preference lists of one set of agents

are strictly ordered, clearly the super-stability and strong stability criteria

are equivalent. Finally, we remark that the terms weakly stable pair and

weakly stable partner may be defined analogously to stable pair and stable

partner respectively, with a similar comment applying in each of the strong

and super-stability cases.

By way of illustration, consider the instance of smt shown in Fig. 1.1.

Here, and henceforth, preference lists are ordered from left to right in de-

creasing order of preference, and entries in round brackets are tied. The

matching

M1 = {(m1, w1), (m2, w3), (m3, w2)}
is weakly stable, but not strongly stable due to the blocking pair (m1, w2)

for example. Also

M2 = {(m1, w2), (m2, w3), (m3, w1)}
is strongly stable, but not super-stable due to the blocking pair (m1, w3)

for example. Finally the matching

M3 = {(m1, w1), (m2, w2), (m3, w3)}
is super-stable.
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Minimum regret, egalitarian, sex-equal and minimum weight weakly sta-

ble, strongly stable and super-stable matchings can be defined in a manner

analogous to Sec. 1.3.4.1.

Given an instance I of hrt, a weakly stable matching is bound to exist

and can be found in linear time [419]. However the weakly stable matchings

in I may be of different sizes and the problem of finding such a matching

of maximum size is NP-hard [419]. On the other hand a strongly stable

matching need not exist in I, though there is a polynomial-time algorithm

to find such a matching or report that none exists [328, 364]. A similar

remark applies to super-stable matchings [326]. Structural and algorithmic

results for hrp under each of the three stability criteria defined above are

outlined in much greater detail in Chap. 3.

1.3.6 Other variants of hr

1.3.6.1 Couples

One key extension of hr that has considerable practical importance arises

when an instance may involve a set of couples, each of which submits a joint

preference list over pairs of hospitals (typically in order that the members

of a given couple can be located geographically close to one another, for

example). The extension of hr in which couples may be involved is denoted

by hrc; the stability definition in hrc is a natural extension of that in hr

(see Sec. 5.3 for a formal definition of hrc). It is known that an instance

of hrc need not admit a stable matching (see Refs. [498], [261, Sec. 1.6.6]

and [514, Sec. 5.4.3]). Moreover, the problem of deciding whether an hrc

instance admits a stable matching is NP-complete, even if there are no

single residents and each hospital has capacity 1 [493]. See Sec. 5.3 for

further details.

1.3.6.2 Many–many stable matchings

hr may be regarded as a many–one generalisation of smi. A further gen-

eralisation of sm is to a many–many bipartite stable matching problem, in

which both residents and hospitals may be multiply assigned subject to ca-

pacity constraints. In this case, residents and hospitals are more commonly

referred to as workers and firms respectively. There are two basic vari-

ations of the many–many stable matching problem according to whether

(i) workers rank acceptable firms in order of preference and vice versa, or

(ii) workers rank acceptable subsets of firms in order of preference and vice

versa. See Sec. 5.4 for more details concerning both models.
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1.3.6.3 Master lists

In some practical situations, the preference lists on one or both sides of an

hr instance may be derived from one or two master lists , which may or

may not contain ties. To be more precise, a master list of residents consists

of a single list containing all of the residents, which may or may not involve

ties; each hospital’s preference list contains its acceptable partners ranked

precisely according to the master list. In other words, the preference list

of a hospital hj is precisely the master list of residents, except that each

resident ri that hj finds unacceptable is deleted (so in general, the deletions

that give rise to hj ’s preference list could be made from any part of the

master list). An analogous meaning is attached to a master list of hospitals.

Algorithmic results for variants of hr involving master lists are described

throughout Chap. 3.

1.3.7 Motivation

Practical applications of hr are widespread, most notably arising in the

context of centralised automated matching schemes that assign applicants

to posts (for example medical students to hospitals, school-leavers to uni-

versities, and primary school pupils to secondary schools). Perhaps the

best-known example is the NRMP, which handled over 38,000 applicants

in 2012 (see Sec. 1.1.1.3). Perhaps the largest existing centralised matching

scheme is the one that handles higher education admission in China : there

were around 10 million applicants to Chinese higher education institutions

in 2007 [593].

Counterparts of the NRMP are in existence in other countries, including

Canada [603], Scotland [604] (the Scottish Foundation Allocation Scheme

(SFAS)) and Japan [596, 354, 355]. These matching schemes essentially

employ extensions of the RGS algorithm for hr. In particular, the NRMP

has employed a resident-oriented version of the Gale–Shapley algorithm

since 1997, having used a hospital-oriented version previously [506].

We describe briefly some practical involvement with SFAS. Rob Irv-

ing, of the School of Computing Science, University of Glasgow, has led a

collaboration with the author involving the design and implementation of

algorithms for SFAS which have been used by NHS Education for Scotland

for annual runs of the matching scheme since 2000. In 2012 for example, 710

applicants (as residents are referred to in the SFAS context) were seeking

to be assigned to 720 available posts on 52 programmes (programme is used
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rather than hospital here, since several programmes might be running at the

same hospital). The algorithm allocated 683 applicants to programmes in

the first round, giving 470 applicants their first choice. The 27 unassigned

applicants were all allocated to programmes in a second run of the algo-

rithm after providing a fresh preference list over the remaining programmes

with vacancies.

Centralised matching schemes based largely on hr also occur (or at least

have been mooted) in other many contexts, including the following:

• assigning children to daycare places in Denmark [375];

• school placement in Boston [1, 4], Hungary [77, 90], New York [2] and

Singapore [567]11;

• higher education admission in China [593,594], Germany [111], Hungary

[77, 90], Spain [491] and Turkey [64, 60, 61]);

• awarding tuition exchange scholarships to dependents of faculty members

[177, 601];

• handling the sorority rush in US universities [454];

• university faculty recruitment in France [60, 61];

• placing military cadets in branches [540];

• assigning naval cadets to billets [490, 589, 406];

• hiring federal judicial law clerks [52, 53];

• placement of graduating rabbis [100];

• online dating in the US [277] and online matrimony in India [352];

• auction mechanisms for sponsored search [32];

• supply-chain networks [471];

• metal-only ECO synthesis [349].

A number of additional examples of where centralised matching schemes

(with hr as the underlying problem model) are used are given in Ref. [505].

See also Refs. [598–600].

1.4 The Stable Roommates problem (sr)

1.4.1 Introduction

In this section we present key definitions and results for the Stable Room-

mates problem, in Secs. 1.4.2 and 1.4.3 respectively. As in the sm case, we

provide definitions and results relating to rotations separately, in Sec. 1.4.4.

11Here, the authors argue that school placement should be handled via a matching
scheme based on constructing stable matchings.
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Preference lists involving forms of indifference are considered in Sec. 1.4.5.

Finally, motivation for studying the Stable Roommates problem is given in

Sec. 1.4.6.

1.4.2 Key definitions

The Stable Roommates problem (sr) [235,394,306,261,514,321] (sometimes

referred to as the Stable Matching problem [11, 551, 205, 211]) is a non-

bipartite generalisation of sm. We begin by defining an extension of sr,

called the Stable Roommates problem with Incomplete lists (sri) [261, Sec.

4.5.2]. Here an instance comprises a single set A = {a1, . . . , an} of agents ,

and n denotes the size of the instance. Also there is a set E of unordered

pairs of agents, termed the acceptable pairs. Each agent ai ∈ A has an

acceptable set of agents A(ai), where

A(ai) = {aj ∈ E : {ai, aj} ∈ E}.

Also, each agent ai ∈ A has a preference list in which she ranks A(ai) in

strict order. Given any three distinct agents ai, aj and ak, the definition of

ai prefers aj to ak can be arrived at in an analogous way to the definition

given in Sec. 1.3.2. As before, we let m = |E|.
An assignment M is a subset of E. If {ai, aj} ∈ M , ai is said to be

assigned to aj . With respect to M , if ai is not assigned to any agent then

ai is said to be unassigned, otherwise ai is assigned .

A matching M is an assignment such that no agent belongs to more

than one pair of M . If {ai, aj} ∈ M then we let M(ai) denote aj . Let AM

denote the set of agents who are assigned in M . A pair {ai, aj} ∈ E\M
blocks a matching M , or is a blocking pair for M , if the following conditions

are satisfied relative to M :

(1) ai is unassigned or prefers aj to M(ai);

(2) aj is unassigned or prefers ai to M(aj).

A matching M is said to be stable if it admits no blocking pair. An instance

I of sri is said to be solvable if I admits a stable matching; I is unsolvable

otherwise.

As in Sec. 1.3.2, for a given instance I of sri, it is straightforward to

define the concepts of a stable pair , a stable partner , and the underlying

graph G = (A,E) of I. The latter is in general a non-bipartite graph, where

A and E are as defined above. Also, for any two distinct agents ai, aj such
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that {ai, aj} ∈ E, we define rank(ai, aj) to be 1 plus the number of agents

that ai prefers to aj .

In the context of an sri instance, it is straightforward to extend the

notions of the regret and the cost of a given stable matching M , in order to

define the concepts of aminimum regret and an egalitarian stable matching.

Similarly it is an easy matter to extend the definition of a minimum weight

stable matching from the smi case (as given in Sec. 1.3.4.1) to the sri

context. The classical Stable Roommates problem (sr) is the special case

of sri in which n is even and all pairs are acceptable, i.e., E contains all

pairs of distinct agents in A.

1.4.3 Key results (up to 1989)

Gale and Shapley [235] showed that an instance of sr need not admit a

stable matching. The following result, due to Irving [306], indicates that it

is possible to determine in polynomial time whether a given instance admits

a stable matching, and if so, to find such a matching.

Theorem 1.18 ([306]). Given an instance I of sr with n agents, there

in an O(n2) algorithm that finds a stable matching in I or reports that I is

unsolvable.

It is straightforward to generalise this algorithm to the sri case [261, Sec.

4.5.2]. In this case, the time complexity is O(m), where m is the number

of acceptable pairs of agents.

Clearly sm is a special case of sri. Moreover, given an instance I of

sm, there is an sr instance J (i.e., with complete preference lists) such that

there is a 1–1 correspondence between the stable matchings in I and those

in J [261, p163].

In a given sri instance I, clearly it is possible that some agents may be

unassigned in a stable matching in I. However, a counterpart to Theorem

1.11 holds in the sri context, as follows.

Theorem 1.19 ([261]). Let I be a solvable instance of sri. The same

set of agents are unassigned in every stable matching in I.

A useful structural result for stable matchings in an instance I of sr

concerns the median choice of a given agent. In order to define this, let M1,

M2 and M3 be three stable matchings in I, and let ai ∈ AM1
. By Theorem

1.19, ai is assigned in each of M1, M2 and M3. If Mj(ai) = Mk(ai) = al
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for any j, k (1 ≤ j < k ≤ 3), then ai’s median choice is al. Otherwise

ai has three distinct stable partners in M1, M2 and M3; denote these by

aj , ak and al, where, without loss of generality, ai prefers aj to ak to al.

Then ai’s median choice is ak. The following result indicates that giving

each agent their median choice among three stable matchings in fact yields

another stable matching.

Theorem 1.20 ([261]). Let I be an instance of sr and let M1, M2 and

M3 be three stable matchings in I. Let M be the stable matching obtained

by giving each agent in AM1
her median choice among M1, M2 and M3.

Then M is a stable matching.

A counterpart of sorts of Theorem 1.13 holds in the case of sr, namely it

is possible to identify a semilattice structure for the set of stable matchings

in a given solvable sr instance I. In order to state this result, we require

to define some notation. Given a stable matching M in I, define P (M)

to be the set of ordered pairs (ai, aj) ∈ AM × AM such that {ai, aj} ∈ M

or ai prefers aj to M(ai). Now let M0 be a fixed stable matching in I.

Define P0(M) = P (M)⊕P (M0), where ⊕ denotes the symmetric difference

operator.

Theorem 1.21 ([261]). Let I be an instance of sr and let S be the set

of stable matchings in I. Let M0 ∈ S be a fixed stable matching. Then

the set {P0(M) : M ∈ S} is closed under intersection and thus forms a

meet-semilattice in which P0(M0) is the minimal element.

An alternative semilattice structure, considered to be “more natural” than

the above, has been proposed by Cheng and Lin [146] (see Sec. 4.4).

Our final observation of this section is that there is an efficient algorithm

for finding a minimum regret stable matching, given an sri instance.

Theorem 1.22 ([261]). Let I be a solvable sri instance. A minimum

regret stable matching in I can be found in O(m) time, where m is the

number of acceptable pairs of agents.

1.4.4 Rotations

Let I be an instance of sri. Irving’s algorithm [306,261] for finding a stable

matching in I, or reporting that none exists, consists of two phases. The

first phase is analogous to an extended form of the classical Gale–Shapley

algorithm for sm [235]; it involves a sequence of “proposals” from a given
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agent ai to the first agent aj on her list, where such a proposal results in

the deletion of all successors of ai from aj ’s list. (Here, and henceforth, the

deletion of ak from the list of aj automatically implies the deletion of aj
from the list of ak.) On termination of this phase, the (reduced) preference

lists form what is called a stable table [261, p.169]; among the properties of

such a table are that all first entries are distinct, and that aj is first in ai’s

list if and only if ai is last in that of aj .

A rotation ρ exposed in a stable table T is a sequence ρ = (ai0 , aj0),

. . . , (air−1
, ajr−1

) of pairs such that ajk is first and ajk+1
second in aik ’s

list in T , for each k (0 ≤ k ≤ r − 1), where arithmetic with respect to

rotations is taken modulo r. Elimination of the rotation involves deleting

all successors of aik−1
from the list of ajk , for each k (0 ≤ k ≤ r − 1).

A key result is that, provided no list becomes empty as a consequence,

the elimination of an exposed rotation from a stable table gives another

(smaller) stable table. Phase 2 of the algorithm consists of the successive

elimination of rotations from the current stable table until either some list

becomes empty as a result, in which case no stable matching exists, or all

lists that were non-empty after phase 1 are reduced to a single entry, in

which case these entries constitute a stable matching. In what follows of

this section, we assume that I is solvable. At the end of phase 1, we may

identify the fixed pairs of I — these are the stable pairs that belong to

every stable matching in I. A pair {ai, aj} is a fixed pair if and only if ai’s

list contains only aj at the termination of phase 1 [261, Lemma 4.4.1].

Suppose that ρ = (ai0 , aj0), . . . , (air−1
, ajr−1

) is a rotation that

is exposed in some stable table. The syntactic dual of ρ is ρ̄ =

(aj1 , ai0), . . . , (aj0 , air−1
). If there is some sequence of rotations that leads

to a stable table in which ρ̄ is exposed, then ρ̄ is also a rotation; in this

case ρ and ρ̄ are called non-singular rotations, and are duals of each other,

otherwise ρ is singular . (Hence the syntactic dual of a singular rotation

is not actually a rotation at all.) A partial order ⊳ is defined on the set

of rotations as follows: ρ ⊳ σ if and only if ρ must be eliminated to give a

stable table in which σ is exposed. The rotations under ⊳ form the rotation

poset for I. A subset S of this poset is closed if, whenever ρ is in S, so

also is every rotation σ such that σ ⊳ ρ. Also S is complete if S contains

every singular rotation of I, together with exactly one of each dual pair of

non-singular rotations.

The following theorem encapsulates the relationship between the rota-

tion poset and the set of all stable matchings in I.
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Theorem 1.23 ([260,261]). Let I be a solvable sri instance. There is

a 1–1 correspondence between the stable matchings in I and the complete

closed subsets of the rotation poset of I.

Exploitation of the rotation poset gives rise to the following algorithmic

results for sri:

Theorem 1.24 ([260,261]). Let I be an instance of sri with n agents,

where m is the number of acceptable pairs in I. Then:

(i) The stable pairs in I can be found in O(nm logn) time.

(ii) The rotations in I can be found and determined as singular or non-

singular in O(nm logn) time.

(iii) The stable matchings in I can be listed in O(m) time per solution,

after O(nm log n) pre-processing time.

We remark that faster algorithms for the problems identified in (i), (ii) and

(iii) of Theorem 1.24 are discussed in Sec. 4.2.4.

Many further structural and algorithmic results for sr, especially those

that appeared in the literature subsequently to the publication of Gusfield

and Irving’s book [261] are presented in Chap. 4.

1.4.5 The Stable Roommates problem with indifference

In Sec. 1.3.5 we considered instances of hr and smi in which preference

lists may contain ties, and other forms of indifference. In this section we

do likewise for instances of sri, The abbreviation srpi (respectively srp)

represents the generalisation of sri (respectively sr) in which preference

lists may be partially ordered. It is a straightforward matter to modify the

definitions of the terms preference poset , prefers and indifferent between

given in Sec. 1.3.5 so that they apply in the srpi setting, and we adopt

analogous notation to that used in Sec. 1.3.5. As in that section, if ∼ai

is transitive for each agent ai then we obtain an instance of srti (respec-

tively srt), representing the generalisation of sri (respectively sr) in which

preference lists may contain ties.

As in the hrp context, we may define weak stability, strong stability and

super-stability [321]. Given a matching M in an instance I of srpi, a pair

{ai, aj} ∈ E\M is said to block M , or to be a blocking pair of M if the

following conditions are satisfied depending on the desired level of stability:
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• weak stability: ai is unassigned or prefers aj to M(ai), and similarly aj
is unassigned or prefers ai to M(aj);

• strong stability: ai is unassigned or prefers aj to M(ai), and aj is unas-

signed or prefers ai to M(aj) or is indifferent between them;

• super-stability: ai is unassigned or prefers aj to M(ai) or is indifferent

between them, and similarly aj is unassigned or prefers ai to M(aj) or

is indifferent between them.

The terms weakly stable pair and weakly stable partner may be defined

analogously to stable pair and stable partner respectively, with a similar

comment applying in each of the strong and super-stability cases.

Structural and algorithmic results for srpi under each of the three sta-

bility criteria defined above are contained in Sec. 4.5.

1.4.6 Motivation

As the problem name suggests, an application of sr arises in the context of

campus housing allocation, where we seek to assign students to share two-

person rooms, based on their preferences over one another [474, 50, 475].

Recently, an application of sri in the medical domain has been studied,

involving pairwise kidney exchange markets [511, 512, 17, 513, 423]. Here,

a patient with chronic kidney disease who has a willing but incompatible

donor may be able to obtain a transplant by swapping their donor with that

of another patient in a similar position. Centralised schemes are in existence

in many countries, including the US [605], the Netherlands [373, 393] and

the UK [597], constructing sets of kidney exchanges among incompatible

patient–donor pairs at regular intervals.

We can model the basic market by constructing an agent for each pa-

tient, and an undirected edge between any two agents where the incompat-

ible donor for one patient is compatible with the other patient, and vice

versa. An edge {pi, pj} in a matching corresponds to a pairwise kidney

exchange, in which pj receives a kidney from pi’s donor in exchange for pi
receiving a kidney from pj ’s donor. Preference lists can be constructed on

the basis of varying degrees of compatibility between patients and potential

donors.

A third application arises in P2P networks [232, 233, 403, 429–431]. For

example [403, 431], in a P2P file-sharing network, a given peer may form

a preference list over other peers based on the similarity of their interests.

In cooperative download applications such BitTorrent, preference functions

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org
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may be derived from properties such as download / upload bandwidth,

latency and storage capacity. The “Tit-for-Tat” strategy of BitTorrent can

give rise to preference lists for peers that are based on a master list of peers

according to upload capacity.

A final application occurs in the context of forming pairings of players

for chess tournaments [401].

1.5 The House Allocation problem (ha) and its variants

1.5.1 Introduction

Many economists and game theorists, and increasingly computer scientists

in recent years, have studied the problem of allocating a set H of indivisible

goods among a set A of applicants [527, 301, 166, 206]. Each applicant ai
may have ordinal preferences over a subset of H (the acceptable goods for

ai). Many models have considered the case where there is no monetary

transfer. In the literature the situation in which each applicant initially

owns one good is known as a Housing Market12 (hm) [527,508,497]. When

there are no initial property rights, we obtain the House Allocation problem

(ha) [301, 595, 5]. A mixed model, in which a subset of applicants initially

owns a good has also been studied [6].

In this section we begin by defining ha and hm formally in Sec. 1.5.2. We

then consider a range of optimality criteria that can be applied to instances

of ha and hm, namely Pareto optimality (see Sec. 1.5.3), maximum utility

(see Sec. 1.5.4), popularity (see Sec. 1.5.5) and profile-based optimality (see

Sec. 1.5.6). Extensions of ha arise when houses may be assigned multiple

applicants up to some fixed capacity, and/or the preference lists of agents

may contain ties. These generalisations are defined in Sec. 1.5.7. Finally,

motivation for studying ha and its variants is given in Sec. 1.5.8.

1.5.2 Formal definition of ha and hm

Formally, an instance I of ha comprises a set A = {a1, a2, . . . , an1
} of

applicants and a set H = {h1, h2, . . . , hn2
} of houses. The agents in I

are the applicants and houses in A ∪ H . There is a set E ⊆ A × H of

acceptable applicant–house pairs. Let m = |E|. Each applicant ai ∈ A has

12This problem is also referred to as the House-swapping Game in the literature [125,
131, 487, 105].
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an acceptable set of houses A(ai), where

A(ai) = {hj ∈ H : (ai, hj) ∈ E}.

Similarly each house hj ∈ H has an acceptable set of applicants A(hj),

where

A(hj) = {ai ∈ A : (ai, hj) ∈ E}.

Each applicant ai ∈ A has a preference list in which she ranks A(ai) in

strict order. Given any applicant ai ∈ A, and given any houses hj , hk ∈ H ,

ai is said to prefer hj to hk if {hj , hk} ⊆ A(ai), and hj precedes hk on ai’s

preference list. Houses do not have preference lists over applicants, and

it is essentially this feature that distinguishes ha from smi. For a given

acceptable applicant–house pair (ai, hj), define rank(ai, hj) to be 1 plus

the number of houses that ai prefers to hj . The underlying graph of I is

the bipartite graph G = (A ∪H,E).

ha is a very general problem model and any application domain hav-

ing an underlying matching problem that is bipartite, where agents in only

one of the sets have preferences over the other, can be viewed as instances

of ha. These include the problems of allocating graduates to trainee po-

sitions, students to projects, professors to offices, clients to servers, etc.

The literature concerning ha has largely described this problem model in

terms of assigning applicants to houses, so for consistency we also adopt

this terminology.

An assignment M is a subset of E. If (ai, hj) ∈ M , ai and hj are

said to be assigned to one another. For each pk ∈ A ∪ H , the set of

assignees of pk in M is denoted by M(pk). If M(pk) = ∅, pk is said to be

unassigned , otherwise pk is assigned . A matching M is an assignment such

that |M(pk)| ≤ 1 for each pk ∈ A ∪ H . For notational convenience, as in

the hr case, if pk is assigned in M then where there is no ambiguity the

notation M(pk) is also used to refer to the single member of the set M(pk).

An instance I of hm comprises an ha instance I where n1 = n2, together

with a matching M0 in I (the initial endowment) such that |M0| = n1. A

matching M in I is individually rational if, for each applicant ai ∈ A,

either ai prefers M(ai) to M0(ai), or M(ai) = M0(ai). Since we are only

interested in individually rational matchings, we assume that M0(ai) is

the last house on ai’s preference list, for each ai ∈ A. Clearly then, any

individually rational matching M in I satisfies |M | = n1.
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a1 : h1 h2

a2 : h1

Fig. 1.2 An instance of ha with Pareto optimal matchings of different sizes

1.5.3 Pareto optimal matchings

Returning to the ha setting, the preferences of an applicant extend to the

set of matchings M in an ha instance I as follows. Given two matchings

M,M ′ ∈ M, we say that an applicant ai ∈ A prefers M ′ to M if either (i)

ai is assigned in M ′ and unassigned in M , or (ii) ai is assigned in both M

and M ′, and ai prefers M
′(ai) to M(ai).

Given this definition, we may define a relation ⊳ on M as follows: if

M,M ′ ∈ M then M ′ ⊳M if no applicant prefers M to M ′, and some appli-

cant prefers M ′ to M . If M ′ ⊳ M then M ′ is called a Pareto improvement

of M . It is straightforward to establish that ⊳ is a partial order on M.

A matching M ∈ M is defined to be Pareto optimal if M is ⊳-minimal.

Equivalently, M is Pareto optimal if and only if there is no other matching

M ′ in I such that (i) some applicant prefers M ′ to M , and (ii) no applicant

prefers M to M ′.

Intuitively a matching M is Pareto optimal if no applicant ai can be

better off without requiring another applicant aj to be worse off. For exam-

ple, M is not Pareto optimal if two applicants could improve by swapping

the houses that they are assigned to in M . Fig. 1.2 gives an example ha

instance that admits Pareto optimal matchings of different sizes, namely

M1 = {(a1, h1)} and M2 = {(a1, h2), (a2, h1)}. Further structural and

algorithmic results for Pareto optimal matchings are given in Chap. 6.

1.5.4 Maximum utility matchings

Stronger notions of optimality have been considered in the literature for

ha. Suppose that, in a given ha instance I, each applicant ai ∈ A has a

positive integral weight wt(ai, hj) for each house hj ∈ A(ai). We assume

that ai prefers hj to hk if and only if wt(ai, hj) < wt(ai, hk). Let W be the

largest weight taken over all applicant–house pairs, let M+ ⊆ M denote

the set of maximum cardinality matchings in I, and let M ∈ M. We define

the weight of M to be wt(M) =
∑

(ai,hj)∈M wt(ai, hj). Define the utility

of an edge (ai, hj) ∈ E to be ut(ai, hj) = W −wt(ai, hj). The utility of M

is then ut(M) =
∑

(ai,hj)∈M ut(ai, hj). M is a maximum utility matching

if ut(M) is maximum, taken over all matchings in M. Clearly a maximum

utility matching is Pareto optimal.
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a1 : h1 h2 h3 a1 : h1 h4 a1 : h1 h3

a2 : h1 h2 h3 a2 : h2 h5 a2 : h2 h1

a3 : h1 h2 h3 a3 : h3 h4 h6 a3 : h2

a4 : h1

Instance I1 a5 : h2 Instance I3
a6 : h3

Instance I2

Fig. 1.3 Three instances of ha

We also define M to be a minimum weight maximum cardinality

matching if M ∈ M+ and wt(M) is minimum, taken over all match-

ings in M+. Each of the problems of finding a maximum utility match-

ing and a minimum weight maximum cardinality matching can be solved

in O(
√
nm log(nW )) time, assuming integral weights [230], where n =

n1 + n2.
13 An important special case arises when wt(ai, hj) = rank(ai, hj)

for all (ai, hj) ∈ E, where rank(ai, hj) is 1 plus the number of houses that

ai prefers to hj . In this case W ≤ n2 and the time complexity of each of the

problems of finding a maximum utility matching and a minimum weight

maximum cardinality matching is O(
√
nm logn) [230].

1.5.5 Popular matchings

Another optimality criterion for an ha instance I is popularity. Let M be

the set of matchings in I and let M,M ′ ∈ M. Let P (M,M ′) denote the set

of applicants who preferM to M ′. Define a “more popular than” relation ◮

on M as follows: if M,M ′ ∈ M, then M ′ is more popular than M , denoted

M ′ ◮ M , if |P (M ′,M)| > |P (M,M ′)|. (Note that ◮ is not in general a

partial order on M.) Define a matching M ∈ M to be popular [21] if M is

◮-maximal (i.e., there is no other matching M ′ such that M ′ ◮ M). Thus,

put simply, M is popular if there is no other matching that is preferred by

a majority of the applicants.

Clearly a matching M is Pareto optimal if there is no other matching

M ′ such that |P (M,M ′)| = 0 and |P (M ′,M)| ≥ 1. Hence a popular

matching is Pareto optimal. However in contrast to the case for Pareto

13See Refs. [172, 294] for recent surveys of algorithms for finding minimum weight max-
imum cardinality matchings in both bipartite and general weighted graphs.
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optimal matchings, an ha instance need not admit a popular matching. To

see this, consider the ha instance I1 shown in Fig. 1.3. It is clear that a

matching in I1 cannot be popular unless all applicants are assigned. The

unique matching up to symmetry in which all applicants are assigned is

M = {(ai, hi) : 1 ≤ i ≤ 3}, however M ′ = {(a2, h1), (a3, h2)} is preferred

by two applicants, which is a majority. The relation ◮ in this case cycles,

hence the absence of a ◮-maximal solution.

Popular matchings can have different sizes, as illustrated by instance

I2 (due to Rob Irving) in Fig. 1.3. It may be verified that the following

matchings are popular in I2:

M1 = {(a1, h1), (a2, h2), (a3, h3)}
M2 = {(a1, h1), (a2, h2), (a3, h4), (a6, h3)}
M3 = {(a1, h1), (a2, h5), (a3, h4), (a5, h2), (a6, h3)}

However it may also be verified that the unique perfect matching in the

underlying graph of I2 is not popular (as M2 is more popular), and hence

a maximum popular matching can be smaller than a maximum cardinality

matching in the underlying graph.

Clearly a matching M in a given ha instance I is popular if and only

if |P (M,M ′)| ≥ |P (M ′,M)| for all matchings M ′ ∈ M. Given this inter-

pretation, it is then natural to define a strongly popular matching, which

is a matching M such that |P (M,M ′)| > |P (M,M ′)| for all matchings

M ′ ∈ M\{M}. It follows that I need not admit a strongly popular match-

ing.

Further structural and algorithmic results for popular matchings are

given in Chap. 7.

1.5.6 Profile-based optimal matchings

Further notions of optimality are based on the profile of a matching. To

define this property, let I be an instance of ha and let M denote the set of

matchings in I. Given a matching M ∈ M, define the regret of M , denoted

r(M), to be the maximum rank of an applicant’s partner in M . Formally

r(M) is defined as follows:

r(M) = max{rank(ai, hj) : (ai, hj) ∈ M}.
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a1 : h1

a2 : h1 h2

a3 : h1 h3

a4 : h1 h4

a5 : h2 h5

a6 : h3 h6

a7 : h4 h7

M7
1 = {(a1, h1), (a5, h2), (a6, h3), (a7, h4)}

M7
2 = {(ai, hi) : 1 ≤ i ≤ 7}

Fig. 1.4 Instance I7 of ha with two particular matchings due to Irving [313]

The profile14 of M , denoted by p(M), is a vector 〈p1, . . . , pr∗〉, where r∗ =

r(M) and for each k (1 ≤ k ≤ r∗),

pk = |{(ai, hj) ∈ M : rank(ai, hj) = k}|.

Intuitively, pk is the number of applicants who have their kth-choice house

in M .

A matching M is rank-maximal [318] if p(M) is lexicographically max-

imum, taken over all matchings in M. Intuitively, in such a matching, the

maximum number of applicants are assigned to their first-choice house, and

subject to this condition, the maximum number of applicants are assigned

to their second-choice house, and so on. A rank-maximal matching need

not be of maximum cardinality. To see this, consider the ha instance I3
shown in Fig. 1.3. Define the following matchings in I3:

M1 = {(a1, h1), (a2, h2)}
M2 = {(a1, h3), (a2, h1), (a3, h2)}

Clearly M1 is a rank-maximal matching in I3 of size 2, whereas M2 is a

maximum matching in I3 of size 3.

Irving [313] gave a family of instances of ha, denoted by In (n ≥ 3),

each with n applicants and n houses, in which a rank-maximal matching

has size 1 + ⌊n/2⌋ and a maximum matching has size n.

This family of instances can be described as follows. In In, A(a1) =

{h1}. Also for each i (2 ≤ i ≤ ⌈n/2⌉), A(ai) = {h1, hi} and ai prefers h1

to hi. Finally for each i (⌈n/2⌉+ 1 ≤ i ≤ n), A(ai) = {hi−⌈n/2⌉+1, hi} and

ai prefers hi−⌈n/2⌉+1 to hi. Instance I7 is illustrated in Fig. 1.4.

14The profile of a matching M has also been referred to the signature of M in the
literature [318, 371, 27, 242, 453, 295].
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It may be verified that

Mn
1 = {(a1, h1)} ∪ {(ai, hi−⌈n/2⌉+1) : ⌈n/2⌉+ 1 ≤ i ≤ n}

is a rank-maximal matching in In, where p(Mn
1 ) = 〈⌊n/2⌋+1〉 and |Mn

1 | =
⌊n/2⌋ + 1. On the other hand Mn

2 = {(ai, hi) : 1 ≤ i ≤ n} is the unique

maximum matching in In and |Mn
2 | = n. Matchings M7

1 and M7
2 are

illustrated relative to I7 in Fig. 1.4.

In many applications we seek to assign as many applicants as possible.

With this in mind, consider M+, the set of maximum matchings in a given

ha instance I, and let r be the maximum rank of a house in an applicant’s

list. A greedy maximum matching15 is a matching M ∈ M+ such that

p(M) is lexicographically maximum, taken over all matchings in M+. Both

rank-maximal and greedy maximum matchings maximise the number of

applicants with their sth-choice house as a higher priority than maximising

the number of those with their tth-choice house, for any 1 ≤ s < t ≤ r.

As a consequence, both of these types of matchings could end up assigning

applicants to houses relatively low down on their preference lists.

Consequently, define a generous maximum matching16 to be a matching

M ∈ M+ such that pR(M) is lexicographically minimum, taken over all

matchings in M+, where pR(M) is the reverse of p(M). That is, M is

a maximum cardinality matching that assigns the minimum number of

applicants to their rth-choice house, and subject to this, the minimum

number to their (r − 1)th-choice house, and so on.

We collectively refer to rank-maximal, greedy maximum and generous

maximum matchings as profile-based optimal matchings. Returning to in-

stance I3 shown in Fig. 1.3, the matching M2 defined above is the unique

maximum matching and is therefore both a greedy maximum matching and

a generous maximum matching.

To give an illustrative comparison of a greedy maximum matching,

a generous maximum matching and a minimum weight maximum cardi-

nality matching (relative to the weight function wt where wt(ai, hj) =

rank(ai, hj) for each acceptable pair (ai, hj)), consider the ha instance

I4, together with the three matchings in I4, shown in Fig. 1.5. Table 1.1

lists the matchings and indicates which is a greedy maximum / generous

maximum / minimum weight maximum cardinality matching, showing also

the profile and weight of each matching.
15A greedy maximum matching has also been referred to as a maximum rank maximal
matching in the literature [447, 452, 295].
16A generous maximum matching has also been referred to as a fair matching in the
literature [19, 447, 367, 442].
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a1 : h1 h2 h3 h4 h5

a2 : h1 h2 h3 h4 h5

a3 : h1 h2 h3 h4 h5

a4 : h1 h3 h5 h4 h2

a5 : h2 h5 h4 h3 h1

M3 = {(a1, h1), (a2, h4), (a3, h5), (a4, h3), (a5, h2)}
M4 = {(a1, h1), (a2, h2), (a3, h3), (a4, h5), (a5, h4)}
M5 = {(a1, h1), (a2, h2), (a3, h4), (a4, h3), (a5, h5)}

Fig. 1.5 Instance I4 of ha with three particular matchings

Table 1.1 Three matchings in the ha instance I4 of Fig. 1.5,
together with their profiles and weights

Matching Profile Weight

M3 : greedy maximum 〈2, 1, 0, 1, 1〉 13
M4 : generous maximum 〈1, 1, 3〉 12
M5 : minimum weight maximum 〈1, 3, 0, 1〉 11

Further structural and algorithmic results for profile-based optimal

matchings are described in Chap. 8.

1.5.7 Extensions of ha

A natural extension of ha arises when applicants are permitted to have ties

in their preference lists (as in the case of smti, but without preferences

of women over men). This gives rise to the House Allocation problem with

Ties (hat). In this case each of the definitions of a Pareto optimal, popular

and profile-based optimal matching, as defined for the ha case in Sec. 1.5.3,

Sec. 1.5.5 and Sec. 1.5.6 respectively, carry over to the hat case without

alteration.

The Capacitated House Allocation problem (cha) is the generalisation

of ha in which houses can be assigned more than one applicant, up to some

fixed limit. That is, it is similar to hr except that hospitals do not have

preference lists.

Formally, an instance I of cha is an instance of ha together with a

capacity cj ∈ Z
+ for each hj ∈ H . All of the definitions relating to an

ha instance as given in Sec. 1.5.2 carry over to the cha context without

change. Furthermore, the definition of a matching is as given for hr in

Sec. 1.3.2. Also full and undersubscribed houses relative to a matching are



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

46 Preliminary definitions, results and motivation

defined in an analogous way to the corresponding definitions in the hr case.

The Capacitated House Allocation problem with Ties (chat) is then

the hybrid of hat and cha, namely the extension of cha in which the

applicants’ preference lists can include ties.

Again, each of the definitions of a Pareto optimal, popular and profile-

based optimal matching, as defined for the ha case in Sec. 1.5.3, Sec. 1.5.5

and Sec. 1.5.6 respectively, carry over to the chat case without change.

In instances of chat, we remark that, for an acceptable applicant–house

pair, rank(ai, hj) is defined in the same way as for the ha case (that is, it

is 1 plus the number of houses that ai prefers to hj).

1.5.8 Motivation

A number of applicatons can be found in different countries and contexts

that involve centralised matching schemes based on ha or some variant of

this problem.

We begin with campus housing allocation. In a number of universities,

centralised matching schemes allocate students to campus accommodation,

taking into account student preferences over available housing. Exam-

ples include Carnegie-Mellon University, Duke University, the University

of Michigan, Northwestern University, and the University of Pennsylvania

in the US [142] and the Technion in Israel [474].

The ha problem model also arises in the context of allocating families

to government-subsidised housing in China [592]. However this application

was not described in terms of a centralised matching scheme. Rather a

description of a “residence exchange fair” was given, in which families can

meet and arrange to exchange their houses with one another. In a residence

exchange fair held in Beijing in 1991, involving 80,000 person-attendances,

one of the swaps arranged involved 9 families!

Assigning students to projects and elective courses in an academic de-

partment also gives rise to applications of ha and its extensions. For ex-

ample at the University of Glasgow, School of Computing Science, students

are assigned to final-year projects using a profile-based optimal matching

algorithm (implemented by Rob Irving and the author) that operates on the

basis of the students’ preferences over available projects. In the University

of Glasgow, School of Medicine, a similar profile-based optimal matching

algorithm is used to assign students to elective courses, taking into ac-

count student preferences over courses and course capacities. For example

in academic year 2006-07, 246 final-year medical students were seeking to
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be matched to 17 elective courses. Each student ranked 6 courses in order

of preference; of these 246, every student was assigned in a generous max-

imum matching to their fourth-choice course or better, with 228 students

obtaining their third choice or better.

Two further applications involve assigning customers to DVDs in the

context of a DVD rental market operated by regular mail taking into ac-

count the preferences of customers over available DVDs [19], and assigning

reviewers to conference papers via a conference management software sys-

tem, based on the preferences of reviewers over the submitted papers [242].

Each of these applications is described in more detail in Sec. 8.5.1 and

Sec. 8.5.2.

Finally, we mention the Teacher Induction Scheme run by the General

Teaching Council for Scotland. As part of this scheme, an eligible student

who is graduating with a teaching qualification from a Scottish University

is guaranteed a one-year probationary teaching post in a Scottish school.

Graduating students are asked to rank in strict order 5 out of Scotland’s

32 local authorities, to indicate their preferences over potential school loca-

tions. Alternatively they can (in return for a financial inducement) indicate

that they are willing to work anywhere in Scotland (meaning that they are

likely to be assigned to more rural areas that typically have a shortfall in

probationers).
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Chapter 2

The Stable Marriage problem:
An update

2.1 Introduction

The Stable Marriage problem has had something of an illustrious history

in the fifty or so years since the publication of Gale and Shapley’s seminal

paper in 1962 [235]. Some of the most significant structural and algorithmic

developments were published by Gusfield and Irving in a series of papers in

the late 1980s [319, 259, 262, 320], culminating in their book, published in

1989 [261]. For a newcomer to the area, after reading this book, it would

perhaps be tempting to believe that all of the most interesting problems had

been solved, and that apart from the open problems posed in the appendix,

little new remained to be proved.

It is perhaps surprising, then, just how much progress has been made

on problems relating to sm and its variants subsequent to the publication of

Ref. [261]. The purpose of this chapter is to update the reader on some of

the most important developments that have been made since then, with an

emphasis on structural and algorithmic results. In describing these results,

we aim to overlap with material already presented in Ref. [261] as little as

possible, though in some cases a certain amount of scene-setting may be

required in order for the context to be clear. Some of the research “high-

lights” that we cover include the ground-breaking papers of Subramanian

and Feder [551,202], the linear programming characterisations of sm and its

variants, decentralised algorithms for constructing stable matchings, and

the beautiful (and unexpected) structural results concerning generalised

median stable matchings.

This chapter is organised as follows. In Sec. 2.2, we begin the technical

discussion by updating the reader on the status of the 12 open problems

posed by Gusfield and Irving in their book [261] that relate to sm and its

51
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variants. Some of these problems have been fully solved, some others are

partially solved, and a few remain open. We next describe in Sec. 2.3 the

papers of Subramanian and Feder. Very broadly, these papers relate stable

matchings in instances of smi and sri to so-called stable configurations of a

network composed of a certain type of gate. This characterisation is taken

further by Feder in order to relate stable matchings in sri to satisfying

truth assignments in a certain 2-sat instance. The consequences of these

transformations are wide-ranging, both in terms of yielding new structural

results and faster algorithms for problems concerned with computing stable

matchings.

In Sec. 2.4 we focus on the various papers that have used linear pro-

gramming to characterise stable matchings in instances of sm and its gener-

alisations. These techniques again contribute new structural results, whilst

also yielding alternative algorithms for computing types of optimal sta-

ble matchings, such as egalitarian, minimum regret and minimum weight

stable matchings. Constraint programming approaches to sm and its vari-

ants are described in Sec. 2.5. These demonstrate that the action of the

Gale–Shapley algorithm can be simulated using so-called arc consistency

propagation. One of the benefits of encoding stable matching problems as

Constraint Satisfaction Problems is that it becomes easy to then model

extensions that are not obviously solvable in polynomial time, by adding

“side constraints” to the basic model.

The Gale–Shapley algorithm for smi can be viewed as a centralised

matching algorithm. Decentralised algorithms for producing stable match-

ings are surveyed in Sec. 2.6. These typically start from a given matching

(which may be empty) and iteratively satisfy blocking pairs in order to ar-

rive at a stable matching. Interestingly, for an arbitrary sm instance, there

may be some stable matchings that can never be reached by starting from

the empty set, no matter what sequence of blocking pairs is followed.

Some of the most beautiful (and unexpected) structural results concern-

ing stable matchings in smi that have been discovered since 1989 involve

so-called generalised median stable matchings. To give an idea of the con-

cept, suppose that each man in an sm instance arranges his stable partners

in preference order, allowing repetitions. Then it turns out that, for each

k, assigning each man the kth element in this ordered list gives rise to not

only a matching, but one that is stable, called the kth generalised median

stable matching. Results concerning the computation of generalised median

stable matchings in smi are surveyed in Sec. 2.7.
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In many practical matching applications where the underlying theoret-

ical model is based on a bipartite matching problem with preferences on

both sides, stability is the key criterion to be satisfied. However, when

preference lists are incomplete, a stable matching might be smaller (up to

50% smaller in the worst case) than a maximum cardinality matching. In

some applications, a limited number of blocking pairs may be tolerated if

that enables a larger matching to be found. In Sec. 2.8 we describe results

connected with finding maximum cardinality matchings with the minimum

number of blocking pairs, given an instance of smi.

Issues of strategy in stable matching problems concern the question

of whether an agent can misrepresent his/her true preferences in order to

obtain a better outcome with respect to a given mechanism. Such ques-

tions have been the focus of much research by economists traditionally, and

an extensive coverage of results up to 1990 appears in Ref. [514]. In the

subsequent years, increasingly this line of research has been taken up by

computer scientists. We review the post–1989 research on strategic issues,

with a particular focus on algorithmic results, in Sec. 2.9.

Some further extensions of sm are discussed in Sec. 2.10. These in-

clude variants where certain acceptable pairs may be forced or forbidden

(Sec. 2.10.1), where we seek a balanced stable matching (Sec. 2.10.2) — this

minimises the maximum of the sum of the ranks of the men’s partners and

the sum of the ranks of the women’s partners, and where we are given a set

of matchings, and we wish to determine whether there is an sm instance

in which all of the given matchings are stable (Sec. 2.10.3). We also dis-

cuss how the theory of stable matchings led to a very elegant proof of the

Dinitz conjecture (Sec. 2.10.4) — this concerns list colouring the edges of

a complete bipartite graph. The proof relates stable matchings to so-called

kernels in directed graphs. This connection was further developed in several

papers on the marriage digraph, which we also survey (Sec. 2.10.5). We also

cover the problems of counting and sampling stable matchings (Sec. 2.10.6),

online algorithms for sm (Sec. 2.10.7), and a general framework for finding

stable matchings with additional “useful” properties in instances of smi and

hr (Sec. 2.10.8). So-called locally stable matchings which arise from social

network graphs are studied in Sec. 2.10.9. Further miscellaneous results are

also gathered together in a single subsection (Sec. 2.10.10).

We close the chapter in Sec. 2.11 by gathering together a selection of

those open problems mentioned in the preceding sections that are, in the

author’s opinion, among the most notable and most deserving of further

investigation.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

54 The Stable Marriage problem: An update

2.2 The 12 open problems of Gusfield and Irving

2.2.1 Introduction

At the end of their book, Gusfield and Irving [261] gave a list of 12 open

problems relating to the stable marriage and stable roommates problems.

This was intended to follow the format of a similar list of 12 open problems

given by Knuth [394]. The first four of Knuth’s open problems concern the

mean number of partner changes / proposals by men or women during an

execution of the Gale–Shapley algorithm, and are different in nature to the

structural and algorithmic material contained in Ref. [261]. Gusfield and

Irving did not consider them further, and neither do we. Another six of

Knuth’s open problems have been solved, as noted by Gusfield and Irving.

That leaves two of Knuth’s open problems, which form problems 1 and 2

in Gusfield and Irving’s list.

In this section we give updates to the open problems from Ref. [261]

that relate to sm — these correspond to Problems 1–7 and half of each of

Problems 10 and 11. Problems 8, 9, 12 and half of each of Problems 10 and

11 from Ref. [261] specifically relate to sr, and are dealt with in Sec. 4.2.

2.2.2 1. Maximum number of stable matchings

Given an sm instance I of size n, we let SI denote the set of stable matchings

in I (we omit the subscript if the instance is clear from the context). This

problem in Ref. [261] relates to constructing an sm instance of size n, for

each n ≥ 1, that admits the maximum number of stable matchings taken

over all sm instances of size n. We let xn denote this number; formally:

xn = max{|SIn | : In is an sm instance of size n}.
This problem is still open. However some progress has been made, which

we now summarise.

Knuth [394, p.56] gave an example sm instance of size 4 with 10 stable

matchings. For completeness, this instance is illustrated in Fig. 2.1. Eilers

[187] showed (by exhaustive computer search) that indeed x4 = 10, and

in fact that Knuth’s example is the unique sm instance of size 4 (up to

isomorphism) with 10 stable matchings.

More generally, Knuth [394, p.4] also showed that, for each n ≥ 1, there

is an instance of sm of size n that admits at least 2n/2 stable matchings.

This result was later strengthened by Irving and Leather [319] who showed

that, for n = 2k for some k ≥ 0, there is an instance Jn of sm of size n that
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Men’s preferences Women’s preferences
m1 : w1 w2 w3 w4 w1 : m4 m3 m2 m1

m2 : w2 w1 w4 w3 w2 : m3 m4 m1 m2

m3 : w3 w4 w1 w2 w3 : m2 m1 m4 m3

m4 : w4 w3 w2 w1 w4 : m1 m2 m3 m4

Fig. 2.1 An instance of sm with 10 stable matchings due to Knuth [394, p.56]

admits least 2n−1 stable matchings. (A neat proof of this is given in Ref.

[261, Sec. 1.3.2], where it is shown that, given sm instances of sizes p and

q, admitting r and s stable matchings respectively, there is an sm instance

of size pq with at least max{rsp, rqs} stable matchings.) In fact Irving

and Leather [319] proved that yn = |SJn
| satisfies the following recurrence

relation for n ≥ 4:

yn = 3y2n/2 − 2y4n/4

subject to y1 = 1 and y2 = 2. Knuth (personal communication, reported

in Ref. [261]) showed that the solution of the recurrence relation satisfies

yn > 2.28n/(1 +
√
3). (2.1)

Gusfield and Irving [261] conjectured that the family of instances so con-

structed satisfies xn = yn for all such n.

Benjamin et al. [70] showed that, for each n ≥ 1, there is an instance of

sm of size 2n that admits (n+ 1)
(

2n
n

)

− 22n−1 stable matchings. In general

this is a weaker bound than Inequality (2.1), but gives a lower bound for

xn for even values of n (recall that (2.1) is valid only when n is a power

of 2).

Hwang [300] showed that, for two positive integers n1 and n2, the in-

equality xn1+n2
≥ xn1

xn2
holds. Since x1 = 1, it follows that xn is

a non-decreasing function of n. Thurber [569] showed that in fact xn

is an increasing function of n. He also showed that, for each n ≥ 1,

xn > 2.28n/(1 +
√
3)(log n+1), generalising Inequality 2.1 which was shown

to hold only for n a power of 2.

Stathopoulos [549] showed that, if n = 2k for some k ≥ 2, xn ≤ ( 5
12 )

n
4 n!.

He also gave an upper bound for the maximum number of stable matchings

in an sr instance.

2.2.3 2. The “divorce digraph”

Let I be an sm instance and let MI be the set of matchings in I. The

divorce digraph of I is a digraph DI = (V,A), where DI contains a vertex
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for each matching in MI (so |V | = n!, where n is the size of I), and the

edges in DI are defined as follows. Given two matchings M,M ′ in MI , we

say that M ′ can be obtained from M by a divorce operation (referred to as

a b-interchange in Ref. [554]) if

M ′ = (M\{(m,M(m)), (M(w), w)}) ∪ {(m,w), (M(w),M(m)}

for some blocking pair (m,w) of M . (Thus in M ′, the man and woman

involved in the blocking pair are matched together, and the “divorcees” are

also matched together.) Given two vertices vM , vM ′ in V , corresponding to

matchings M and M ′ in MI respectively, (vM , vM ′) ∈ A if and only if M ′

can be obtained from M by a divorce operation. It follows that vM ∈ V is

a sink vertex of DI if and only if the corresponding matching M ∈ MI is

stable. The problem posed by Gusfield and Irving relates to exploring the

structure of DI , and in particular determining whether, given an arbitrary

vertex vM0
∈ V , we can always find a path from vM0

to a sink vertex.

Knuth [394, pp.2–3] showed that DI could contain cycles, and therefore it

is not the case that, given an arbitrary vertex vM0
∈ V , every path from

vM0
leads to a sink vertex.

Tamura [554] solved this problem by constructing an sm instance I4
and identifying a set M0 ⊆ MI4 such that (i) I4 has size 4, (ii) five of the

4! = 24 matchings in MI4 are stable, (iii) |M0| = 16, and (iv) given any

matching M0 ∈ M0, there is no path in DI4 from vM0
to a sink vertex.

Tamura showed how to generalise this construction to form an arbitrarily

large sm instance In of size n, for each n ≥ 4, with a similar property.

Returning to an arbitrary sm instance I, in the case that we start from a

given matching M0 and follow a sequence of divorce operations which leads

to a cycle in DI , Tamura showed that all is not lost. More formally, he

gave an algorithm (a so-called b-interchange algorithm) that finds, starting

from vM0
, a path on vertices vM0

, vM1
, . . . , vMs

for some s ≥ 1, where either

vMs
is a sink vertex, or vMs

= vMr
for some r (0 ≤ r < s), in which case

the path starting from vM0
leads to a cycle C. In the latter case, Tamura

showed how to construct a matching M from C such that bp(M) ⊂ bp(M0)

(note that this step does not involve divorce operations). Matching M is

then the next starting point for a further iteration of the b-interchange

algorithm. Thus, iterating this approach will ultimately lead to a stable

matching being constructed, starting from an arbitrary matching. Note

that Tamura was not able to conclude whether this process is guaranteed

to terminate in a polynomial number of steps. The difficulty is not the

number of times that the b-interchange algorithm is invoked (which must
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be bounded above by n2, since |bp(M)| ≤ n2 for any matching M), but

rather the potential length of a cycle output by the algorithm.

Tan and Su [560] independently solved this problem by providing an sm

instance I ′4 (not the same as Tamura’s instance I4) of size 4 and identifying

a setM′
0 ⊆ MI′

4
such that (i) I ′4 has size 4, (ii) two of the 4! = 24 matchings

in MI′

4
are stable, (iii) |M′

0| = 16, and (iv) given any matching M0 ∈ M′
0,

there is no path in DI4 from vM0
to a sink vertex. The authors also proved

that any sm instance with the property that some matching cannot be

transformed to a stable matching via a sequence of divorce operations must

be of size at least 4. Further, they showed that I ′4 could be generalised

to produce a family of instances of arbitrarily large size with the desired

property.

Tan and Su additionally gave an algorithm for transforming an arbi-

trary matching M0 into a stable matching in an sm instance I using a

sequence of divorce operations. However, as in the case of Tamura’s algo-

rithm, additional types of operations may be necessary. The approach of

Tan and Su is to regard I as an instance of sri and invoke the theory of

stable partitions in I (see Sec. 4.3). Without loss of generality, suppose that

M0 = {(mi, wi) : 1 ≤ i ≤ n}. The idea is to use an incremental approach,

constructing for each k (1 ≤ k ≤ n) a matching of size k that is stable in

Ik, where Ik is the sub-instance of I obtained by deleting each man mj and

each woman wj such that k < j ≤ n. The starting point is the matching

{(m1, w1)}, which is trivially stable in I1. Inductively, for k ≥ 2, given a

matching Mk−1 (of size k − 1), that is stable in Ik−1, the authors show

that, within a sequence of O(n2) divorce operations, either Mk−1 can be

transformed into a matching Mk (of size k) that is stable in Ik, or else the

process cycles in DI , in which case a stable partition Πk in Ik is produced.

As Ik is an instance of sm, every party in Πk has even length, and therefore

by Theorem 4.4, Πk can be transformed into a stable matching Mk in Ik
(however this step does not of course involve divorce operations). At each

iteration of Tan and Su’s algorithm, the next divorce operation takes O(n2)

time to locate1, and therefore the algorithm has O(n5) complexity overall.

We make two remarks about the approaches of Tamura and of Tan and

Su. Firstly, Step 2 of Tamura’s b-interchange algorithm closely resembles

Tan and Su’s proposal-rejection alternating sequence which is used to con-

struct Mn iteratively from M0. Secondly, it is possible that the algorithms

in both of these papers might not exclusively use divorce operations even

1With the aid of appropriate data structures, it is possible that O(n2) could be improved
to O(n).
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when there is a path from vM0
to a sink vertex in DI , due to a cycle being

traversed in DI instead. Hence the complexity of the following fundamental

decision problem is still open: given an sm instance I and a matching M0,

is there a path in DI from vM0
to a sink vertex?

Note that, if we drop the insistence, as in this subsection, that the

“divorcees” marry one another as part of the divorce operation, then the

landscape changes dramatically — see Sec. 2.6 for more details.

2.2.4 3. Parallel algorithms for stable marriage

This problem asks whether sm belongs to NC.2 The problem is still open.

The only significant development following the publication of Ref. [261] is

the paper of Feder et al. [205], where the following was proved, indeed for

the more general case where we are given an instance I of sri:

• the problem of finding a stable matching in I or reporting that none

exists can be solved in O(
√
m log3 m) time on an m4-processor CRCW

PRAM (here, m is the number of acceptable pairs);

• the agents who are matched in all stable matchings in I can be found in

O(
√
m log3 m) time on an m3-processor CRCW PRAM;

• the set of stable matchings in I can be characterised in terms of a 2-sat

instance (see Sec. 4.2.4 for more details regarding this characterisation)

in O(
√
m log3 m) time on an m4-processor CRCW PRAM.

The approach of Feder et al. is based on the primal–dual interior path-

following method for linear programming; the difficulty of parallelising the

McVitie–Wilson algorithm for sm [445,446] due to its inherently sequential

nature in parts had already been observed [486].

Additional results regarding the parallel complexity of sri were given

by Subramanian [551]. These are reviewed in Sec. 2.3.1, as it is more

appropriate to present these results in the wider context of the discussion

of the framework presented by that paper.

The original question of Gusfield and Irving, and the results of Feder

et al. [205] and Subramanian [551] apply to a shared memory architecture.

Alternatively, Lu and Zheng [408] considered parallel algorithms for an

sm instance I in three computational models based on a message-passing

architecture, namely a hypercube, a mesh of trees (MOT) and an array

2NC is the class of decision problems that admit a parallel algorithm running in poly-
logarithmic time on a polynomial number of processors. It is a major open problem as
to whether P=NC.
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with multiple broadcasting buses. Their algorithms each consist of two

alternating phases, namely an Initiation Phase and an Iteration Phase,

which consists of multiple iterations. The authors show that an execution of

the Initiation Phase, and an iteration of an Iteration Phase, have O(log n)

complexity on an array with multiple broadcasting buses, and O(log2 n)

complexity on either a hypercube or an MOT, where each architecture

comprises n2 processors (here n is the size of I). Their simulations indicate

that each algorithm converges within n rounds with high probability.

Although not directly relevant to the original problem posed by Gusfield

and Irving, it is appropriate to briefly review distributed algorithms for sm

here. Here the underlying model of distributed computation is based on a

bipartite graph, where each node corresponds to a processor, and each one

ranks nodes in the opposite set of the bipartition in order of preference.

Amira et al. [44] focused on a special case of smi where the preferences

are derived from a global ranking function of the edges in the underlying

bipartite graph (see Sec. 4.7 for more details of this model). They con-

sidered two different models of communication. In the so-called billboard

model, they showed that any algorithm for the problem requires at least

n − 1 steps, where n is the size of the smi instance, and they provided an

algorithm that achieves this bound. In the so-called distributed weighted

model , the authors gave an O(
√
n) algorithm for the problem.

For a general smi instance I of size n, Kipnis and Patt-Shamir [383]

proved that any distributed algorithm for I requires Ω(
√

n/B logn) com-

munication rounds in the worst case, where B is the number of bits per

message. They also gave an O(D +m) distributed algorithm for the find-

ing a stable matching, where D is the diameter and m is the number of

acceptable pairs.

Other studies of distributed algorithms for sm and its variants include

Refs. [382, 152, 532, 112,113, 151, 220].

2.2.5 4. Batch stability testing

This problem concerns whether a set of matchings in an sm instance I can

be checked for stability within a time bound that substantially improves

on the näıve approach which involves checking each matching for stability

in O(n2) time, where n is the size of I. In particular, Gusfield and Irving

[261] asked whether each matching could be checked for stability in time

sub-quadratic in n for each matching, following some “reasonable” pre-

processing time (O(n4) was suggested as a measure of “reasonable”).
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This problem has been largely solved by Dabney and Dean [158], even

in the smi case. To describe their results, let I be an instance of smi and

let M0 be a set of k matchings in I that we require to check for batch

stability. Clearly it is possible to verify the stability of the matchings in

M0 in O(km) = O(kn2) overall time, where m is the number of acceptable

pairs in I. However the authors give a new characterisation of the stability

of a matching in I in terms of the connectivity of the so-called expanded

rotation graph, which is built up from the rotations in I together with

precedence relations between them. Using this characterisation, together

with existing results concerning efficient data structures for fully dynamic

connectivity in graphs, they show that the stability of the matchings in

M0 can be checked in O((m + kn) log2 n) overall time. This essentially

equates to the verification of each matching in O(n log2 n) amortised time,

following O(m log2 n) pre-processing time. This does not, however, imply

that each matching in M0 can be checked in O(n log2 n) time in the worst

case, following O(m log2 n) pre-processing time.

It remains open as to whether the “amortised” qualification on the

time complexity for checking a single matching in M0 for stability can

be dropped, and moreover whether each matching in M0 can be checked

for stability in o(m) time in the worst case.

2.2.6 5. Structure of stable marriage with ties

Gusfield and Irving [261] asked whether there is a characterisation or com-

pact representation of the set of stable matchings for an instance of smti.

To answer this question properly, we need to be clear as to which stability

definition is being used. As mentioned in Sec. 1.3.5, Irving [308] defined

three levels of stability for smt instances, namely weak stability, strong

stability and super-stability, and these definitions were later generalised to

the smti case [414].

It is known that, given an instance of smt, the set of weakly stable

matchings need not form a lattice (see Sec. 3.2.2 for more details). In the

case of sm, the link between elegant structural characterisations of stable

matchings and efficient algorithms for a range of problems concerned with

computing stable matchings was a recurring theme in Ref. [261]. However

as noted in Sec. 3.2, many of the corresponding problems turn out to be

NP-hard in smt or smti under weak stability. Hence it seems unlikely that

we can expect any kind of natural structure to be present for weakly stable

matchings.
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On the other hand, for super-stability, it is known that the set of super-

stable matchings for an instance I of smti forms a distributive lattice

[548, 415] (see Sec. 3.4.3 for more details). The concept of a meta-rotation

(consisting of a set of rotations that must be eliminated in turn) has been

defined for smti under super-stability [523, Chapter 6] and leads to a char-

acterisation of the super-stable matchings in I in terms of the closed subsets

of a related digraph. However a simpler characterisation may be obtained

by transforming from I to an instance of the Stable Marriage problem with

Forbidden Pairs (see Sec. 2.10.1). The transformation itself is described in

the proof of Theorem 4.39 for the more general case that I is an instance

of srti.

We now turn to the third stability criterion for smti, namely strong

stability, which lies “in between” weak stability and super-stability. It

is known [415] that the set of equivalence classes of the strongly stable

matchings for a given smti instance (under a natural equivalence relation)

forms a distributive lattice — see Sec. 3.3.3 for more details. To date,

no definition of a rotation has been given that is applicable in the strong

stability case. Thus a range of interesting algorithmic problems remain open

concerning the computation of various kinds of strongly stable matchings

— see Sec. 3.6 for further details.

As part of their Open Problem 5, Gusfield and Irving [261] asked

whether there is an LP representation of an instance of smti under weak,

strong or super-stability. This problem is still open, however formulations

of smti and hrt under weak stability as a Constraint Satisfaction Problem

were given in Refs. [251, 252] and [470] respectively (see Sec. 2.5).

2.2.7 6. Sex-equal matching

Gusfield and Irving [261] observed that, with respect to an egalitarian stable

matching, it is possible for the members of one sex to fare much better than

those of the other sex. As noted by Romero-Medina [491], this is illustrated

very well by Knuth’s example sm instance of size 4 [394, p.56], illustrated in

Fig. 2.1. Recall that this instance has 10 stable matchings; moreover each

has cost 20, and thus each stable matching is egalitarian. However the sex-

equality measure measures of the 10 stable matchings constitute the set

{−12,−8,−4, 0, 4, 8, 12}. This motivates the Sex-Equal Stable Matching

problem (sesm), the problem of finding a sex-equal stable matching, given

an smi instance. Gusfield and Irving asked whether there is a polynomial-

time algorithm for sesm.
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Kato [360] was the first to show that sesm is NP-hard, by reducing

from partially ordered knapsack [350], [241, pp.247–248]. McDer-

mid and Irving [443] gave a shorter reduction from clique [241, p.194] to

sesm, which was inspired by Johnson and Niemi’s reduction from clique to

partially ordered knapsack. Moreover McDermid and Irving proved

that sesm is NP-hard even if each preference list in the constructed smi

instance is of length at most 3. In fact they proved that the problem of

determining whether, given an smi instance where each preference list is

of length at most 3, there exists a stable matching M where d(M) = 0, is

NP-complete.

On the other hand, when preference lists are of length at most 2 on

one side (and there is no upper bound on the preference list lengths on the

other side), they showed that sesm is solvable in O(n3) time, where n is

the instance size, using dynamic programming.

Exact algorithms for NP-hard cases of sesm have been given. If I is an

smi instance in which the preference lists on one side are of length at most k

(for some k ≥ 3), and there is no upper bound on the preference list lengths

on the other side, McDermid and Irving [443] showed that, given any ε > 0,

sesm can be solved in O∗(2αn+2β) time3, where α = (5− 2
√
4)(k− 2+ ε),

β = (k−1)/2ε and n is the size of I. For a sufficiently small choice of ε, this

equates to O∗(1.0726n) for k = 3, O∗(1.1504n) for k = 4 and O∗(1.2339n)

for k = 5.

Romero-Medina [491] gave an exact algorithm for sesm where there are

no restrictions on the preference list lengths. The author did not analyse

the complexity of his algorithm, though claimed in his concluding section

that the algorithm runs in polynomial time. However this would obviously

contradict Kato’s result [360] (which is not referenced in Ref. [491]) unless

P=NP, and therefore it is more likely that the algorithm’s complexity is

exponential in the worst case. Moreover the running time is likely to be

poorer than that of McDermid and Irving for the case that preference lists

on one side are of bounded length.

At a very general level, both algorithms are based on computing an

appropriate closed subset of rotations whose elimination leads to a sex-

equal stable matching. McDermid and Irving’s algorithm, however, employs

a very novel technique along the following lines: if the number of rotations

in the rotation digraph D(I) of I is “small” enough, it is sufficient to

enumerate all subsets of the vertices in D(I) in order to solve the problem.

3A function f satisfies f(n) = O∗(g(n)) if f(n) = O(p(n)g(n)), where p is a polynomial
function of n.
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Otherwise, it is shown that G(I) (which is obtained from D(I) by replacing

every arc by an undirected edge) must have bounded average degree, in

which case G(I) admits a sufficiently large induced subgraph G′(I) that

is series–parallel [184]. The algorithm enumerates each subset S1 of the

rotations in G(I)\G′(I) (again this subgraph is sufficiently “small”), and,

for each such subset, an optimal closed subset S2 of rotations from G′(I)

is identified in polynomial time (by exploiting the fact that G′(I) is series-

parallel), such that S1 ∪ S2 is an optimal closed subset of rotations in I.

Iwama et al. [344] also studied sesm, mainly from an approximability

point of view. Let I be an instance of smi, and let Ma and Mz denote the

man-optimal and woman-optimal stable matchings in I respectively. Let

∆ = min{|d(Ma)|, |d(Mz)|}. The authors gave a polynomial-time algorithm

that finds a near-optimal solution to sesm. That is, given some fixed ε > 0,

in polynomial time the algorithm returns a matching M such that −ε∆ ≤
d(M) ≤ ε∆, or reports that no such matching exists (the complexity of the

algorithm is O(n3+ 1
ε ), where n is the size of I).

Recall from Sec. 1.3.4.1 that the cost of a stable matching M in I, de-

noted by c(M), is a measure that is minimised by an egalitarian stable

matching. Iwama et al. [344] gave an example sm instance in which two

near-optimal stable matchings have very different cost values. In fact, the

example demonstrates that this is the case for two sex-equal stable match-

ings (in a sense, this is an “opposite” example to the one described earlier in

this subsection, in which two egalitarian stable matchings had very different

values of d(M)). This motivates the Minimum Egalitarian Sex-Equal Sta-

ble Marriage problem (mesesm): among all near-optimal stable matchings

in a given sm instance, find a matching M such that c(M) is minimum (or

report that no such matching exists). The authors showed that mesesm is

NP-hard and gave an approximation algorithm with performance guarantee

(2− (ε− δ)/(2+ 3ε)) for any fixed δ such that 0 < δ < ε (the running time

of the algorithm is O
(

n3+2( 1+ε
δ )

)

, where n is the size of I).

Genetic and ant colony-based algorithms for sesm have also been con-

sidered [459, 582].

A concept that is superficially similar to a sex-equal stable matching is

that of a balanced stable matching — see Sec. 2.10.2 for more details.

2.2.8 7. Lying and egalitarian matchings

This question relates to the investigation of forms of strategic behaviour

that could benefit an individual or several members of a coalition when we
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are concerned with a mechanism (i.e., an algorithm) for sm that produces

a stable matching other than the man-optimal or the woman-optimal solu-

tions. In particular, in relation to this question, Gusfield and Irving [261]

refer to a mechanism based on computing an egalitarian stable matching.

We are not aware that this specific question has been addressed explictly

in the literature, however there have been several studies of strategic issues

relating to sm mechanisms following the publication of Ref. [261] — see

Sec. 2.9 for more details.

2.2.9 10. Succinct certificates

The part of this problem that relates to sm asks whether there is a succinct

(i.e., o(n2) size) certificate of the stability of a matching in a given sm

instance of size n, given that there is a very simple (i.e., O(1) size) witness

that a matching is not stable, namely a blocking pair. This question was

answered in the negative by Dougherty and Selkow [170], who proved that

the certificate complexity [114] of determining whether a given matching is

stable in an sm instance of size n is Ω(n2). They proved that similar lower

bounds hold for determining whether a man–woman pair is (i) stable, (ii)

a fixed pair, or (iii) unstable (i.e., not a stable pair). Note that certificate

complexity is a measure of the size of a witness of a given property, and

does not correspond to the time taken to compute that witness. Thus the

results of Dougherty and Selkow (and result (i) in particular) are subtly

different from those of Ng and Hirschberg (see Sec. 2.10.10).

2.2.10 11. Algorithmic improvements

Gusfield and Irving conjectured that an egalitarian stable matching can be

found for a given smi instance I in O(m) time, where m is the number of

acceptable pairs in I. No such algorithm has been found to date. However

Feder [202,203] gave an O(m1.5) algorithm for the problem, which improved

on the O(m2) algorithm due to Irving et al. [320,261], and an O(n3
√
logn)

algorithm due to Ng [462]. More generally, Feder showed that the prob-

lem of finding a minimum weight stable matching in I can be solved in

O(min(n,
√
K)m log(K/m + 2)) time, where n is the size of I and K is

the weight of a minimum weight stable matching. This improved on the

O(m2 logn) algorithm described by Gusfield and Irving [261]. Note that in

Ref. [203], the running time of Feder’s algorithm for minimum weight stable

matching is given as O(m
√
K) if K = O((m/ log2 m)2), and O(nm logK)

for arbitrary K. See also Ref. [314] for a discussion of these results.
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Feder [202] showed that the problem of finding an egalitarian stable

matching in I is at least as difficult as the udcs problem in a bipartite

multigraph with n vertices and at most m edges, where the vertex bounds

add up to at most m. The fastest algorithm for this problem has O(m1.5)

complexity [226] (see Sec. 1.2), and therefore any improvement for the egal-

itarian stable matching problem below a bound of O(m1.5) would imply a

similar speed-up for udcs.

2.3 The Subramanian and Feder papers

Around the time that Gusfield and Irving were finalising their manuscript

[261], two significant papers relating stable matching theory to network

stability in the context of circuit design were about to be published as

extended abstracts in the proceedings of two international conferences [433,

200]. The complete versions of these papers, authored by Subramanian

[551] and Feder [202], appeared in journals some years later. As the full

details of these papers were not available to Gusfield and Irving at the time

of writing, their book [261] contained only brief descriptions of the results

of Subramanian and Feder. We update the reader by summarising more

fully the contributions of these papers here, and in particular, outlining the

impact of their results on the theory of stable matching.

Subramanian’s paper [551], which builds on earlier work of Mayr and

Subramanian [433,434], is described in Sec. 2.3.1. It is based on modelling

stable matchings in an instance of sri in terms of so-called stable configura-

tions in a network composed of so-called scatter-free gates. Subramanian’s

construction has a variety of structural and algorithmic consequences in

the sri context, and perhaps most notably, leads to results concerning the

parallel complexity of a range of problems concerned with finding stable

matchings in sri instances. In the smi case, Subramanian applies a fixed-

point approach to his characterisation to establish that the set of stable

matchings is non-empty and forms a lattice.

Feder’s paper [202] also extends earlier work of Mayr and Subramanian

[433, 434, 551], and is dealt with in Sec. 2.3.2. This paper is the jour-

nal version of the author’s earlier conference paper [200] and much of the

material contained therein is drawn from the author’s PhD thesis [201].

Feder demonstrates, using so-called stable configurations in an adjacency-

preserving network , and in turn using fixed points of an associated func-

tion defined on a hypercube, that there is a correspondence between
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stable matchings in an instance of sri and satisfying truth assignments in

an instance of 2-sat. This characterisation, combined with the algorithmic

results for 2-sat contained in Ref. [203], leads to a range of algorithmic con-

sequences for problems concerned with computing stable matchings in the

sri context. That Feder’s characterisation is a profound structural result is

without question, however it is arguable that if one is only interested in the

algorithmic consequences for sri, an easier way to achieve these complexity

results is to use the simpler 2-sat characterisation of sri contained in Ref.

[261], together with the 2-sat algorithms from Ref. [203]. We explore this

point in more detail in Sec. 2.3.2.

Finally, we review other fixed-point approaches to characterising sm in

Sec. 2.3.3.

2.3.1 Subramanian: sri and network stability

Subramanian [551] demonstrated that there is a deep relationship between

stable matchings in sri and so-called network!stability. In this context, a

network is a boolean circuit with feedback: that is, it is a digraph where

source nodes and sink nodes correspond to input and output bits respec-

tively, and all other nodes represent gates, where a gate corresponding to a

vertex v with indegree r1 and outdegree r2 is essentially a boolean function

f : {0, 1}r1 −→ {0, 1}r2. The Network Stability problem (ns) is to deter-

mine whether a given network N and a given input bit string (applied to

the source nodes of N) has a stable configuration, which is an assignment of

boolean values to the arcs of the network that respects the input string and

the gate constraints. In general ns is NP-complete [434]. However x-ns is

more accessible — this is the special case of ns where each gate is a so-called

X-gate (consisting of two inputs and two outputs) [434, 551]; these satisfy

the so-called scatter-free property, which can be exploited by efficient al-

gorithms. Subramanian’s framework leads to a range of concise proofs of

existing results, including simpler algorithms, and also new structural and

algorithmic consequences. We review these in this subsection.

The first main result of the paper is a linear-time reduction from an

instance I of sri to an instance N of x-ns, with the property that the stable

matchings in I are in 1–1 correspondence with the stable configurations of

N . Subramanian gave a linear-time algorithm for x-ns, and hence it follows

that there is a linear-time algorithm for finding a stable matching in I or

reporting that none exists (thus providing an alternative method to that in

Ref. [306]). From properties of the stable configurations of N , Subramanian

was also able to deduce that the same set of agents are assigned in all
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stable matchings in I (thus giving an alternative proof of Theorem 4.5.2

in Ref. [261]). Furthermore, the linear-time algorithm for finding a stable

configuration in N may be adapted in order to construct a minimum regret

stable matching in I (thus providing an alternative approach to that in Ref.

[261, Sec. 4.4.3]).

Subramanian was also able to use his characterisation in order to de-

duce, for an unsolvable sri instance I, the existence of disjoint cycles in the

corresponding network N , each containing an odd number of NOT gates.

This structural result is reminiscent of the existence of an odd party in a

stable partition for I (see Sec. 4.3). Furthermore, Subramanian used the

#P-completeness of the problem of counting the number of stable configu-

rations for a given instance of x-ns [551] in order to show that the problem

of counting the number of stable matchings for a given instance of sri is

#P-complete. This gives an alternative proof of the existing result of Irv-

ing and Leather [319] for this problem (although Irving and Leather had

established hardness for the counting problem in the sm case).

In the case that I is an instance of smi, Subramanian showed that N

may be formulated as a comparator network , i.e., it can be constructed from

(the simpler two-input, two-output) comparators rather than X-gates. In

this case N is an instance of c-ns (Comparator Network Stability). This

observation leads to a simple (non-constructive) proof that I admits a stable

matching. We remark that whilst Gale and Shapley’s proof of this result

[235] was of course constructive, Sotomayor [542] had already provided an

alternative non-constructive proof. Moreover, the lattice structure for the

set of stable matchings S in I (see Theorem 1.13) follows from the fact

that the set of stable configurations of N is a distributive lattice [551].

Alternatively, fixed-point theory can be invoked to deduce that S is non-

empty and forms a lattice. That is, in the smi context, the relationship

between the stable matchings in I and the stable configurations of N can

be expressed in terms of a monotone function. As a consequence of Tarski’s

fixed-point theorem [562], it follows that S is non-empty and forms a lattice.

We now turn to parallel complexity. Subramanian [551] also showed that

the x-ns and the Comparator Circuit Value (c-cv) problems are equiva-

lent under many–one logspace reductions [351]. c-cv is the problem of

determining whether a given output node has value 1, given a comparator

network N and an input bit string (here N must be a circuit, i.e., the un-

derlying digraph must be acylic). c-cv can be solved in O(
√
m logc m) on

an O(
√
m)-processer PRAM, for some c > 0, where m is the size of the

circuit [434].
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With the use of appropriate reductions, this result about the parallel

complexity of c-cv sheds light on the parallel complexity of various sta-

ble matching problems. In particular, the results are stated in terms of

CC-completeness . The class CC consists of those decision problems that

are reducible to c-cv [434] (again under many–one logspace reductions).

CC-complete problems are therefore equivalent to c-cv under many–one

logspace reductions.

It is known that L⊆ NL ⊆ NC ⊆ P.4 The inclusions L ⊆ NL ⊆ CC ⊆
P hold [434], and it is conjectured [434] that the inclusions are strict, and

that CC and NC are incomparable.

The following problems have been shown to be CC-complete [434,551]:

• Does a given man–woman pair belong to the man-optimal stable match-

ing for a given smi instance?

• Does a given sri instance have a stable matching?

• Is a given pair of agents {ai, aj} in a given sri instance I a fixed pair

(i.e., does {ai, aj} belong to every stable matching in I)?

• Is a given pair of agents in a given sri instance a stable pair?

• Does a stable matching in a given sri instance have regret at most K,

for a given integer K?

Subramanian [551] noted that sri is in NC for the case that all preference

lists are of length at most 2.

Another (logspace) reduction in Subramanian’s paper is from an smi

instance I to an instance J of the Assignment problem (i.e., maximum

weight bipartite matching) — this reduction allows the man-optimal stable

matching in I to be computed from an optimal solution in J . Note that

this is the only stable matching in I that is preserved under this reduction;

it is an open problem to formulate a reduction from an smi instance I to

the Assignment problem that preserves the structure of all solutions in I.

Lê et al. [402] proposed an alternative definition of the class CC, based

on a weaker form of reducibility to c-cv. The authors showed that smi is

complete for CC under this weaker reduction, claiming that their proof is

simpler than Subramanian’s corresponding proof for (many–one) logspace

reductions. See also Ref. [155].

The final result in Subramanian’s paper is the NP-completeness of de-

termining whether a stable matching exists, given an instance of 3gsm (see

Sec. 5.6.1.1). This problem was already known to be NP-complete [465].

4L and NL are classes of decision problems that can be solved using logarithmic space
on a deterministic and non-deterministic Turing machine respectively.
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Subramanian’s alternative proof is based on a reduction from y-ns, the re-

striction of the Network Stability problem in which the network comprises

so-called Y-gates (involving three inputs and three outputs).

2.3.2 Feder: sri and 2-sat

Feder [202] extended Subramanian’s network stability characterisation of

stable matching problems by considering networks with so-called adjacency

preserving gates (to be defined below). A special case of these are scatter-

free gates, which formed the basis of Subramanian’s framework (Mayr and

Subramanian [434] showed that the problem of finding a stable config-

uration or reporting that none exists, for a given network with scatter-

free gates, is solvable in linear time, whereas the problem is NP-hard for

arbitrary networks). Feder then characterised networks with adjacency-

preserving gates in terms of 2-sat instances, which in turn led to a new

framework for representing sri instances. The end result was a series of

theorems yielding new structural and algorithmic results for a whole range

of problems associated with computing types of stable matchings. In many

cases, these implied improved algorithms for problems that were already

known to be polynomial-time solvable.

As the title of Feder’s paper alludes to, the approach that he took is

based on viewing stable configurations in a network as fixed points of a

so-called edge-preserving function on a hypercube, which in turn leads to a

2-sat representation. We now give an overview of the framework; many of

the key definitions closely follow the treatment in Ref. [202].

Recall that a configuration is an assignment of boolean values to the arcs

of a network N , which can be represented by an m-bit string x = x1 . . . xm,

where xi is the value assigned to arc i and m is the number of arcs in N . We

can associate with N a transition function fN : {0, 1}m −→ {0, 1}m on the

set of configurations. Function fN maps a configuration x = x1 . . . xm to

the configuration y = y1 . . . ym that is obtained by evaluating in parallel all

of the gates in N with the xi values as inputs and the yi values as outputs.

Network N can be regarded as a single gate such that the output on the ith

arc feeds into the input on the ith arc. The configuration x is then stable

if and only if it is a fixed point under fN , i.e., fN(x) = x.

We now define the concepts of an adjacency-preserving network and an

edge-preserving mapping. Two bit strings are defined to be adjacent if they

differ in at most one bit. A gate is defined to be adjacency-preserving if,

for any input bit string x, the corresponding output bit string y is adjacent
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to x. A network N is adjacency-preserving if all gates in N are adjacency-

preserving. This is equivalent to requiring that fN , viewed as a single gate,

be adjacency-preserving. The graph with 2m vertices corresponding to the

bit strings of length m and with edges between adjacent bit strings is a

reflexive hypercube, the m-cube (reflexive here refers to the fact that each

vertex has a self-loop). If fN is adjacency-preserving, it maps adjacent

vertices to adjacent vertices in the hypercube and is therefore an edge-

preserving mapping.

Feder gave an O(m3) algorithm which, given an edge-preserving map-

ping f on the m-cube, finds a fixed point of f , or reports that none exists. If

the algorithm is applied to fN then it therefore yields a stable configuration

in the adjacency-preserving network N or reports that none exists.

Feder then went on to explore structural properties of edge-preserving

mappings on the hypercube. The so-called median structure of the hyper-

cube is used to show that (a) the set of stable configurations has a simple

characterisation as a 2-sat instance on the boolean variables associated

with the edges of the network, and (b) the behaviour of the network is

closely related to a certain permutation on these boolean variables. In par-

ticular, the 2-sat clauses characterise the set of all fixed points of f . In a

network of gatewidth c (this is the maximum, taken over each gate g, of the

minimum of the number of inputs and outputs of g), an instance of 2-sat

with O(cm) clauses that characterises all the stable configurations can be

found in O(c2m) time.

Putting all of these reductions together, we are thus able to characterise

stable matchings in an sri instance by satisfying truth assignments for a

2-sat instance. Specifically, given an sri instance I, Feder constructed a

2-sat instance J with O(m) variables and clauses in O(m) time, where m

is the number of acceptable pairs in I, such that the stable matchings in

I are in 1–1 correspondence with the satisfying truth assignments in J .

Feder [202] also gave a reduction in the opposite direction, which trans-

forms a minimum weight 2-sat instance5 I into an sri instance J such that

a satisfying truth assignment of minimum weight in I corresponds to an

egalitarian stable matching in J and vice versa.

In a different paper [203], Feder used a network flow-based approach

to derive efficient algorithms for a range of problems relating to 2-sat,

namely minimising the weight of a solution, finding the transitive closure,

5Here, each variable has a non-negative weight, the weight of a truth assignment is the
sum of the weights of the variables that are true under f , and the objective is to find a
satisfying truth assignment with minimum weight.
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recognising partial solutions and enumerating all solutions. Using the above

reduction, these then yield a range of structural and algorithmic results for

problems relating to sri, including an efficient algorithm for finding a min-

imum weight stable matching, given an smi instance (see Sec. 2.2.10), a

2-approximation algorithm for the problem of finding a minimum weight

stable matching, given an sri instance (see Sec. 4.2.5), and efficient algo-

rithms for finding all stable pairs and listing all stable matchings, given an

sri instance (see Theorem 4.1).

Feder [202] also considered the parallel complexity of sri and proved

that, given an sri instance I, the problem of finding a stable matching or

reporting that none exists is reducible to (and therefore no harder than) the

problem of deciding whether I admits a stable matching, showing that the

former problem is CC-complete (recall that the latter problem was already

known to be CC-complete [434, 551]).

Feder’s approach [202] involves creating a 2-sat instance J correspond-

ing to an sri instance I without appealing directly to the structural results

from Ref. [261, Chapter 4] concerning the rotation poset in I. Even so,

the notion of a rotation is implicit in his construction [202, p.264]. Feder

argued that his framework is mathematically appealing and sheds light on

the parallel complexity of sri. However if one is only interested in sequen-

tial algorithms, and is familiar with the structure of rotations in an sri

instance, it is arguable that the transformation from sri to 2-sat given by

Theorem 4.3.4 in Ref. [261] is much simpler. The algorithms for 2-sat pro-

vided by Feder in Ref. [203] and used in Ref. [202] can equally be applied

to the 2-sat instances constructed by Gusfield and Irving [261, pp.194–

195] in order to obtain the same structural and algorithmic consequences

as observed by Feder in Refs. [202, Sec. 8] and [203, Sec. 9]. A fuller

description of Gusfield and Irving’s construction, together with the appli-

cation of Feder’s 2-sat algorithms [203], appears in Sec. 4.2.4 (see also

Ref. [216, Sec. 5]).

2.3.3 Other fixed-point approaches

Two additional characterisations of sm based on a fixed-point approach

have been formulated by Adachi [31] and Fleiner [208–211].

Adachi [31] characterised the set of stable matchings S in an sm instance

in terms of the fixed points of an increasing function (distinct from those

of Subramanian and Feder). That S is non-empty and forms a lattice

are then consequences of Tarski’s fixed-point theorem [562], in view of the

monotonicity of the mapping.
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Fleiner’s approach involves characterising stable matchings via the fixed

points of a function that is defined in terms of so-called co-monotone set

functions. His model is valid not just for sm, but for the many–many sta-

ble marriage problem (see Sec. 5.4). Again, he invokes Tarski’s fixed-point

theorem [562] to deduce the non-emptyness and lattice structure of the set

of stable matchings in a given problem instance. In fact, his framework

draws together a whole range of fundamental results from the field of com-

binatorics, which might previously have been considered to be completely

unrelated to the theory of stable matchings. See Refs. [208–210] for fur-

ther details. One result that follows from his framework is a generalisation

of stable matching theory to the matroid context [209]. We conclude by

remarking that Eguchi et al. [185] extended the matroidal model to the

framework of discrete convex analysis (see also Ref. [224]).

2.4 Linear programming approaches

Two Linear Programming (LP) formulations of sm are given in Ref. [261,

Sec. 3.7]. Each of these takes an sm instance I and constructs a set of

linear inequalities J such that the set of stable matchings in I is in 1–

1 correspondence with the extreme points of the polytope of solutions to

the LP defined by J . The first LP model [261, Sec. 3.7.1] is based on

expressing a stable matching in terms of a closed subset of rotations that

are to be eliminated. The second [261, Sec. 3.7.2] is a more direct set of

inequalities that refers only to the preference lists in I and does not require

prior knowledge of the rotation poset of I. The first approach is due to

Gusfield and Irving, whilst the second is due to Vande Vate [576]. When

proving the correctness of his model, Vande Vate implicitly transformed his

system of inequalities into those given in Sec. 3.7.1 of Ref. [261].

Rothblum [520] extended Vande Vate’s results to the smi case, and in-

deed to the hr case too, and claimed that his proofs (showing that the

extreme points of the polytopes of solutions corresponding to his LP mod-

els are integral) are simpler and more transparent than those of Vande

Vate. Roth et al. [510] used duality theory in the linear programming con-

text to obtain new results and to derive new proofs of known results for

sm. Again, they claimed a simpler proof (compared to those of Vande

Vate and Rothblum) of correctness for their LP formulation of sm. They

also defined a fractional stable matching to be a solution to their linear

inequalities (although not necessarily an extreme point of the polytope of
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such solutions) and showed that the set of fractional stable matchings for

a given sm instance forms a distributive lattice.

Abeledo and Rothblum [12] showed that the Gale–Shapley algorithm for

sm can be considered as an application of the dual–simplex method. Also,

Abeledo et al. [10] showed that a fractional stable matching has a unique

representation as a convex combination of (integral) stable matchings, and

used this construction in order to give an alternative proof of the existence

of a lattice structure for fractional stable matchings, as earlier observed

by Roth et al. [510]. The results of Abeledo et al. [10] were also obtained

independently by Teo and Sethuraman [565], whose correctness proofs were

claimed to be simpler.

LP formulations of sm have been extended in order to find egalitarian,

minimum regret and minimum weight stable matchings [261, Sec. 3.7.1][576,

565, 141].

Bäıou and Balinski [58] formulated an LP model for hr, whose solutions

correspond to the so-called stable admissions polytope. They also extended

their technique to the case that a minimum weight stable matching is re-

quired (given a weight function on the edges of the underlying bipartite

graph). Sethuraman et al. [526] studied the linear inequalities as given by

Bäıou and Balinski [58] for hr from a geometric point of view, and showed

that, in the hr context, a fractional stable matching has a decomposition

into a convex combination of (integral) stable matchings. This leads to

an alternative proof that the extreme points of the polytope of solutions

corresponding to the LP model are integral.

Fleiner [212] further generalised the LP characterisation of hr due to

Bäıou and Balinski to the many–many bipartite stable matching context.

2.5 Constraint programming approaches

2.5.1 Introduction

Over the last 15 years, stable matching problems have been the focus of

much interest from the Constraint Programming (CP) community (see

Refs. [48, 494] for a general introduction to CP). In particular, several

authors have modelled sm and smi in terms of a Constraint Satisfaction

Problem (csp) [39, 250, 409, 257, 420, 573, 572, 571] (see Ref. [48, pp.9–10]

for a definition of a csp). Modifications and extensions of these mod-

els have also been considered for a range of variants of smi, including

smti [251, 252], hr [424, 188], hrt under weak stability [470], many–many
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bipartite stable matching [189] and student–project allocation [179, 568].

Models for distributed versions of sm and sr have also been proposed

[112, 113, 532, 530], and additionally, a so-called soft csp formulation of

the problem of finding a minimum weight stable matching in sm has been

constructed [96].

In this section we illustrate the techniques involved by presenting a

simple (n+ 1)-valued binary6 csp encoding [420] for an instance I of smi.

This model bears some resemblance to the encoding of sm given in Ref.

[409] and develops the “conflict matrices” model of Ref. [250]. For our

model we demonstrate that Arc Consistency (AC) propagation [72] (see

Ref. [48, Sec. 5.2] for a general introduction to AC) can be carried out in

O(n3) time, where n is the size of I. Furthermore, we demonstrate that

AC propagation achieves the same results as an extended version of the

Gale–Shapley algorithm in a precise sense.

This section is organised as follows. We begin by giving some prelimi-

nary definitions and results in Sec. 2.5.2, prior to presenting the csp model

from Ref. [420] in Sec. 2.5.3. Then, in Sec. 2.5.4, we explore the structural

relationship between the GS-lists (defined in the next subsection) in the

smi instance and the effect of establishing AC in this model.

2.5.2 Preliminaries

Gusfield and Irving [261, Sec. 1.2.4] described an extended version of the

Gale–Shapley algorithm for sm that avoids some unnecessary steps by delet-

ing from the preference lists certain man–woman pairs that cannot belong

to a stable matching. Henceforth we refer to this as the EGS algorithm; it

is straightforward to extend this to the smi case [261, Sec. 1.4.2]. We re-

fer to the man-oriented (respectively woman-oriented) version of the EGS

algorithm as the MEGS (respectively WEGS) algorithm.

Upon termination of the MEGS (respectively WEGS) algorithm for a

given smi instance, the reduced preference lists that arise following the

deletions are referred to as the MGS-lists (respectively WGS-lists). The

intersection of the MGS-lists with the WGS-lists yields the GS-lists [261,

p.16]. Some important structural properties of the GS-lists are given by

the following theorem.

6The term binary refers to the fact that each constraint has arity 2, while the term
boolean refers to the case that each variable’s domain has size 2.
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Theorem 2.1 ([261, Theorem 1.2.5]). For a given instance of smi:

(i) all stable matchings are contained in the GS-lists;

(ii) no matching of size k that is contained in the GS-lists can be blocked

by a pair that is not in the GS-lists, where k is the number of men

who have a non-empty GS-list;

(iii) in the man-optimal (respectively woman-optimal) stable matching,

each person who has an empty GS-list is unassigned, each man with a

non-empty GS-list is partnered by the first (respectively last) woman

on his GS-list, and each woman with a non-empty GS-list is partnered

by the last (respectively first) man on hers.

In the next subsection we will construct a csp encoding J of an smi instance

I, proving that the GS-lists in I correspond to the domains remaining after

establishing AC in J . Furthermore, we will show that we are guaranteed a

failure-free enumeration of all stable matchings in I using AC propagation

combined with a value-ordering heuristic in J .

2.5.3 Overview of the csp model

Let I be an smi instance in which U = {m1,m2, . . . ,mn} is the set of men

and W = {w1, w2, . . . , wn} is the set of women. For each man mi ∈ U and

woman wj ∈ W , the lengths of mi’s and wj ’s preference lists are denoted

by l(mi) and l(wj) respectively. We let m denote the number of acceptable

pairs in I. Also, for any person ai ∈ U ∪W , we let PL(ai) denote the set of

persons on ai’s original preference list in I, and we let GS(ai) denote the

set of persons on ai’s GS-list in I. For avoidance of ambiguity, throughout

this section, for any acceptable pair (mi, wj), each of rank(mi, wj) and

rank(wj ,mi) is defined with respect to the original preference lists in I

(i.e., prior to any potential deletions by the MEGS / WEGS algorithms).

We define a csp encoding J for an instance I of smi [420] by introducing

2n variables to represent the men and women in the original instance I.

For each man mi ∈ U , we introduce a variable xi in J whose domain,

denoted by dom(xi), is initially defined as dom(xi) = {1, 2, . . . , l(mi)} ∪
{n + 1}. Similarly, for each woman wj ∈ W , we introduce a variable yj
in J whose domain, denoted by dom(yj), is initially defined as dom(yj) =

{1, 2, . . . , l(wj)} ∪ {n+ 1}.
An intuitive meaning of the variables is now given. Informally, if

xi = p (1 ≤ p ≤ l(mi)), then mi marries the woman wj such that

rank(mi, wj) = p, and similarly for the case that yj = q (1 ≤ q ≤ l(wj)).
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1. xi ≥ p ⇒ yj ≤ q (1 ≤ i ≤ n, 1 ≤ p ≤ l(mi))
2. yj ≥ q ⇒ xi ≤ p (1 ≤ j ≤ n, 1 ≤ q ≤ l(wj))
3. yj 6= q ⇒ xi 6= p (1 ≤ j ≤ n, 1 ≤ q ≤ l(wj))
4. xi 6= p ⇒ yj 6= q (1 ≤ i ≤ n, 1 ≤ p ≤ l(mi))

Fig. 2.2 The constraints for the (n+ 1)-valued encoding of an instance of smi [420]

More formally, if min dom(xi) ≥ p (1 ≤ p ≤ l(mi)), then the pair (mi, ws)

has been deleted as part of the MEGS algorithm applied to I, for all

ws such that rank(mi, ws) < p. Hence if wj is the woman such that

rank(mi, wj) = p, then either mi proposes to wj during the execution

of the MEGS algorithm or the pair (mi, wj) will be deleted before the pro-

posal occurs. Similarly if min dom(yj) ≥ q (1 ≤ q ≤ l(wj)), then the pair

(mr, wj) has been deleted as part of the WEGS algorithm applied to I,

for all mr such that rank(mr, wj) < q. Hence if mi is the man such that

rank(wj ,mi) = q, then either wj proposes tomi during the execution of the

WEGS algorithm or the pair (mi, wj) will be deleted before the proposal

occurs. If xi = n + 1 (respectively yj = n + 1) then mi (respectively wj)

is unassigned upon termination of each of the MEGS or WEGS algorithms

applied to I.

The constraints used for the (n + 1)-valued encoding are shown in

Fig. 2.2. In the context of Constraints 1 and 4, j is the integer such that

rank(mi, wj) = p; also q = rank(wj ,mi). In the context of Constraints 2

and 3, i is the integer such that rank(wj ,mi) = q; also p = rank(mi, wj).

An interpretation of Constraints 1 and 3 is now given (a similar inter-

pretation can be attached to Constraints 2 and 4 with the roles of the men

and women reversed). First consider Constraint 1, a stability constraint.

This ensures that if a man mi obtains a partner no better than his pth-

choice woman wj , then wj obtains a partner no worse than her qth-choice

man mi. Now consider Constraint 3, a consistency constraint. This en-

sures that if man mi is removed from wj ’s list, then wj is removed from

mi’s list.

2.5.4 Arc consistency in the csp model

We now show that, given the above csp encoding J of an smi instance I,

the domains of the variables in J following AC propagation correspond to

the GS-lists of I. That is, we prove that, after AC is established, for any

i, j (1 ≤ i, j ≤ n), wj ∈ GS(mi) if and only if p ∈ dom(xi), and similarly
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mi ∈ GS(wj) if and only if q ∈ dom(yj), where rank(mi, wj) = p and

rank(wj ,mi) = q.

The proof is presented using two lemmas. The first lemma shows that

the arc consistent domains are equivalent to subsets of the GS-lists. This

is done by proving that the deletions made by the MEGS and WEGS al-

gorithms applied to I are correspondingly made during AC propagation.

The second lemma shows that the GS-lists correspond to a subset of the

domains remaining after AC propagation. This is done by proving that the

GS-lists for I give rise to arc consistent domains for the variables in J .

Lemma 2.2 ([420]). For a given i (1 ≤ i ≤ n), let p be an integer (1 ≤
p ≤ l(mi)) such that p ∈ dom(xi) after AC propagation. Then the woman

wj such that rank(mi, wj) = p belongs to the GS-list of mi. A similar

correspondence holds for the women.

Lemma 2.3 ([420]). For each i (1 ≤ i ≤ n), define a domain of values

dom(xi) for the variable xi as follows: if GS(mi) = ∅, then dom(xi) =

{n+1}; otherwise dom(xi) = {rank(mi, wj) : wj ∈ GS(mi)}. The domain

of each yj (1 ≤ j ≤ n) is defined analogously. Then the domains so defined

are arc consistent in J .

The two lemmas above, together with the fact that AC algorithms find

the unique maximal set of arc consistent domains7, lead to the following

theorem.

Theorem 2.4 ([420]). Let I be an instance of smi, and let J be a csp

instance obtained by the (n+1)-valued encoding. Then the domains remain-

ing after AC propagation in J correspond to the GS-lists of I in the fol-

lowing sense: for any i, j (1 ≤ i, j ≤ n), wj ∈ GS(mi) if and only if

p ∈ dom(xi), and similarly mi ∈ GS(wj) if and only if q ∈ dom(yj), where

rank(mi, wj) = p and rank(wj ,mi) = q.

The constraints shown in Fig. 2.2 may be revised in O(1) time during prop-

agation, assuming that upper and lower bounds for the variables’ domains

are maintained. Hence the time complexity for establishing AC is O(ed),

where e is the number of constraints and d is the domain size [574]. For

this encoding we have e = O(m) and d = O(n), therefore AC may be

7This follows because (i) AC algorithms return a maximal set of arc consistent domains,
and (ii) the union of any two sets of arc consistent domains gives rise to a set of arc
consistent domains.
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established in O(nm) time; also the space complexity is O(m). These com-

plexities represent an improvement on the “conflict matrices” encoding in

Ref. [250], whose time and space complexities are O(n4) and O(m2) respec-

tively. Moreover we claim that the model presented in this section is a very

natural and intuitive encoding for smi.

Theorem 2.4 and Part (iii) of Theorem 2.1 show that we can find a

solution to the csp giving the man-optimal stable matching Ma without

search: for each man mi ∈ U , we let p = min dom(xi). If p = n+1 then mi

is unassigned in Ma, otherwise the partner ofmi is the woman wj ∈ W such

that rank(mi, wj) = p. Considering the yj variables in a similar fashion

gives the woman-optimal stable matching Mz.

In fact we may go further and show that the csp encoding yields all

stable matchings in I without having to backtrack due to failure. That

is, we may enumerate all solutions of I in a failure-free manner using AC

propagation in J combined with a value-ordering heuristic. The following

theorem describes the enumeration procedure.

Theorem 2.5 ([420]). Let I be an instance of smi and let J be a csp

instance obtained using the (n + 1)-valued encoding. Then the following

search process enumerates all solutions in I without repetition and without

ever failing due to an inconsistency:

• AC is established as a preprocessing step, and after each branching deci-

sion, including the decision to remove a value from a domain;

• if all domains are arc consistent and some variable xi has two or more

values in its domain, then the search proceeds by setting xi to the min-

imum value p in its domain. On backtracking, the value p is removed

from the domain of xi;

• when a solution is found, it is reported and backtracking is forced.

The above results show that, provided the model is chosen carefully,

AC propagation within a csp formulation of smi captures the structure

produced by the EGS algorithm. Furthermore, in many practical situa-

tions there may be additional constraints that cannot be accommodated

by a straightforward modification of the EGS algorithm. Such constraints

could however be built on top of the model that we present here. Possi-

ble extensions could arise from variants of smi that are NP-hard (see e.g.,

Secs. 2.2.7, 3.2.4, 5.3.3 and 5.6.1) — see Ref. [571, Chapter 6] for further

details.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

2.6. Paths to stability 79

2.6 Paths to stability

2.6.1 Introduction

In Sec. 2.2.3 we considered the problem of transforming an arbitrary match-

ing M0 in an sm instance I to a stable matching in I using a sequence of

divorce operations, each of which involves satisfying a blocking pair and

assigning the “divorcees” to one another. As described, Tamura [554], and

independently Tan and Su [560], each gave an example sm instance and

initial matching M0 such that it is not possible to transform M0 to a stable

matching using only divorce operations. At the end of that section we re-

marked that the situation changes dramatically if the divorcees are allowed

to remain single.

In this case a number of papers have shown that, for several sta-

ble matching problems, we can always find a sequence of matchings

M0,M1, . . . ,Mt such that Mt is stable, and for each i (1 ≤ i ≤ t), Mi

can be obtained from Mi−1 by satisfying a blocking pair (mp, wq) of Mi−1,

i.e., Mi is obtained from Mi−1 by adding (mp, wq) and letting Mi−1(mp)

and Mi−1(wq) (as applicable in either case) be unassigned. Decentralised

algorithms for constructing such sequences will be reviewed in this section.

We begin in Sec. 2.6.2 by reviewing the Roth–Vande Vate Mechanism for

smi [516]. Then in Sec. 2.6.3, we describe results that relate to the ques-

tion of which stable matchings can be reached by the a special case of this

algorithm, called the Random Order Mechanism. Finally in Sec. 2.6.4 we

survey other decentralised algorithms for stable matching problems.

2.6.2 The Roth–Vande Vate Mechanism

Let I be an instance of smi and let M0 be an arbitrary matching in I.

Roth and Vande Vate [516] considered a random sequence of matchings

M0,M1, . . . , where for each i ≥ 1, Mi is obtained from Mi−1 by satisfying

a blocking pair. The blocking pair that is satisfied at each step is chosen at

random, subject to the constraint that there is a positive probability that

any particular blocking pair (from among those that exist at a given step)

is chosen. Roth and Vande Vate [516] showed that this random sequence

converges to a stable matching with probability 1.

Nevertheless, it is still possible that the process can cycle if the “wrong”

choice of blocking pair is made at each step. Roth and Vande Vate [516]

illustrated this using an example of Knuth [394]. Abeledo and Rothblum
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[13] gave a stronger example to show that cycling is still possible even in

the case that the blocking pair that is satisfied at each step involves a pair

of agents (mp, wq) where wq is the most-preferred woman in mp’s list who

forms a blocking pair with mp.

Roth and Vande Vate gave a constructive proof of their convergence

result which contained an algorithm for building a sequence M1, . . . ,Mt

such that Mt is stable, and for each i (1 ≤ i ≤ t), Mi can be obtained from

Mi−1 by satisfying a blocking pair. This algorithm has become known in

the literature as the Roth–Vande Vate Mechanism.

We refer to the Roth–Vande Vate Mechanism as Algorithm RVV, and

a pseudocode description of this algorithm can be found in Algorithm 2.1

(the presentation of the pseudocode is influenced by the descriptions of

Cechlárová [119], Biró et al. [81], and Biró and Norman [95]).

The algorithm uses the following notation. Suppose that U =

{m1, . . . ,mn} is the set of men and W = {w1, . . . , wn} is the set of women

in I. The algorithm will modify a matching M , which is initially equal to

M0. The algorithm maintains a set S of agents, which is initially empty.

At any point during the algorithm’s execution M |S denotes M ∩ (S × S)

and I|S denotes the sub-instance of I obtained by deleting every member

of (U ∪W )\S, and deleting each such agent from the preference list of each

member of S. Throughout this section we will use the notation ai and bj
to denote arbitrary agents (i.e., ai can either be a man or a woman, and

similarly for bj). We will also use (ai, bj) to denote a man–woman pair; thus

if ai ∈ W and bj ∈ U then (ai, bj) actually corresponds to the man–woman

pair (bj , ai).

We will now describe an execution of Algorithm RVV. The loop in this

algorithm iterates as long as M is not stable in I. It will maintain two loop

invariants, as follows: (i) no member of S is assigned in M to a member

outside of S, and (ii) M |S is stable in I|S . During a loop iteration, if there

is a blocking pair (ai, bj) of M in I such that ai /∈ S and bj ∈ S then

Algorithm add is called with parameter ai. Otherwise, any blocking pair

(mi, wj) of M in I must satisfy the property that mi /∈ S and wj /∈ S, by

loop invariant (ii). In this case, Algorithm satisfy is called with paramters

mi and wj .

Algorithm add and Algorithm satisfy are described in Algorithms 2.2

and 2.3 respectively. Note that these algorithms, along with Algorithm

RVV, assume that I, M , S and t are declared as global variables.

At the start of an execution of Algorithm add with parameter ai, ai’s

partner in M (if applicable) is set to be unassigned. Also ai is added to
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Algorithm 2.1 Algorithm RVV [516]

Require: smi instance I and a matching M0 in I
Ensure: M is stable in I and can be obtained from M0 by iteratively satisfying

blocking pairs
1: M := M0;
2: S := ∅;
3: t := 0;
4: while M is not stable in I do

5: if there exists (ai, bj) ∈ bp(I,M) such that ai /∈ S and bj ∈ S then

6: add(ai);
7: else

8: choose (mi, wj) ∈ bp(I,M); {then mi /∈ S and wj /∈ S}
9: satisfy(mi, wj);

10: end if

11: end while

S. The task is to ensure that, following the arrival of ai, we can restabilise

the matching so that M |S is again stable in I|S . This is carried out by the

while loop, whose execution is referred to as a proposal–rejection sequence.

If ai, the proposer , is a blocking agent (i.e., is involved in a blocking

pair) of M |S in I|S , we let (ai, bj) be the best blocking pair of M |S in I|S
according to ai’s preference list. Then bj ∈ S. If bj is assigned in M , to

as say, the pair (as, bj) is removed from M , and as is recorded as the next

proposer (note that as ∈ S, since (as, bj) ∈ M |S). The pair (ai, bj) is then

added to M . The while loop terminates when the proposer is not a blocking

agent of M |S in I|S .
Algorithm satisfy is used to satisfy a blocking pair (mi, wj) of M , where

mi /∈ S and wj /∈ S. Both of these agents are added to S. Also each of the

partners of mi and wj (if applicable) is set to be unassigned in M . Finally

(mi, wj) is added to M .

We will prove via the following lemma and theorem that the algorithm

produces a finite sequence of matchings M0,M1, . . . ,Mt, where Mt is stable

in I. Some of the exposition in the proof of Lemma 2.6 follows the approach

taken in Ref. [81].

Lemma 2.6. Each loop iteration ℓ of Algorithm RVV terminates. More-

over, at the end of ℓ, (i) M contains no pair (ai, bj) such that ai /∈ S and

bj ∈ S, and (ii) M |S is stable in I|S .

Proof. We prove this by induction on the number of iterations r of the

main loop of Algorithm RVV. Clearly at the beginning of the first loop
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Algorithm 2.2 Algorithm add (method for Algorithm RVV) [516]

Require: agent ai /∈ S
Ensure: ai ∈ S and M |S is stable in I |S
1: if ai is assigned in M then

2: M := M\{(ai,M(ai))};
3: end if

4: S := S ∪ {ai};
5: while isBlockingAgent(I |S ,M |S , ai) do
6: {ai is the “proposer”}
7: (ai, bj) := bestBlockingPair(I |S,M |S , ai);
8: az := ai;
9: if bj is assigned in M then

10: as := M(bj);
11: M := M\{(as, bj)};
12: ai := as;
13: end if

14: M := M ∪ {(az, bj)};
15: t++;
16: Mt := M ;
17: end while

Algorithm 2.3 Algorithm satisfy (method for Algorithm RVV) [516]

Require: agents mi /∈ S and wj /∈ S
Ensure: mi ∈ S, wj ∈ S and M |S is stable in I |S
1: S := S ∪ {mi, wj};
2: if mi is assigned in M then

3: M := M\{(mi,M(mi)};
4: end if

5: if wj is assigned in M then

6: M := M\{(M(wj), wj};
7: end if

8: M := M ∪ {(mi, wj)};
9: t++;

10: Mt := M ;

iteration ℓ, S = ∅. During ℓ, Algorithm satisfy is called with agents mi

and wj such that (mi, wj) ∈ bp(M). It is immediate that this method

terminates, and once it does, S = {mi, wj} and (mi, wj) ∈ M , so clearly

(i) and (ii) from the lemma statement are satisfied.

Now suppose that r ≥ 1, and let M∗ and S∗ denote the contents of M

and S at the very end of the rth loop iteration of Algorithm RVV. Then

the induction hypothesis is that (i) M∗ contains no pair (ai, bj) such that
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ai /∈ S and bj ∈ S, and (ii) M∗|S∗ is stable in I|S∗ . Let ℓ denote the

(r + 1)th loop iteration of Algorithm RVV. During ℓ, either (a) Algorithm

add is called, or (b) Algorithm satisfy is called.

In case (a), Algorithm add is called with parameter ai, for some

ai /∈ S∗. Let ℓ′ denote this execution of Algorithm add, and suppose that

the proposers during ℓ′ are ak0
, ak1

, ak2
, . . . , where ak0

= ai. Note that

the proposers need not be distinct, however we claim that the proposal–

rejection sequence is finite, i.e., there is some z ≥ 0 such that akz
is the

last proposer.

To establish the claim, we note that there is at least one iteration of

the while loop during ℓ′, because there is some bj ∈ S∗ such that (ai, bj) ∈
bp(M), which led to the call of Algorithm add during ℓ. Let the sequence

bkp
(p ≥ 1) be defined such that (akp−1

, bkp
) is the best blocking pair for

akp−1
, identified in line 7 of the while loop iteration in which akp−1

is the

proposer. For each p ≥ 1, by the induction hypothesis and by the choice of

best blocking pair for akp−1
(in line 7 of the while loop iteration in which

akp−1
is the proposer), it is clear that akp

∈ S and bkp
∈ S. Also ak0

is

added to S during ℓ′.

It is immediate that, for each p ≥ 1, bkp
prefers akp−1

to akp
. Also,

for each p ≥ 1, akp
prefers bkp

to bkp+1
(for otherwise (akp

, bkp+1
) blocks

M∗|S∗ in I|S∗ , a contradiction. Thus for each p ≥ 0, if akp
(respectively

bkp
) appears in the sequence more than once, their partner in M will be

successively worse (respectively better). Hence each pair (akp
, bkp+1

) can

occur in the sequence at most once. Thus, since the number of acceptable

pairs is finite, it follows that there is some q ≥ 1 such that either (I) bkq
is

unassigned in M , or (II) akq
is not a blocking agent of M |S in I|S . In each

case, the proposal–rejection sequence terminates (in case (I), akq−1
is the

last proposer, whilst in case (II), akq
is the last proposer).

As already noted, at the termination of ℓ′, each member of the proposal–

rejection sequence is in S, and thus condition (i) from the statement of the

lemma is satisfied. At this point, suppose that (akp
, bc) blocks M |S in I|S ,

for some p (0 ≤ p ≤ q − 1) and bc ∈ S. Consider the while loop iteration z

which corresponds to the last occurrence of akp
as a proposer during ℓ′. Let

M ′ be the matching at the beginning of loop iteration z. As this while loop

iteration corresponds to the last occurrence of akp
as a proposer during

E, it follows that (akp
,M(akp

)) is the best blocking pair of M ′|S in I|S
identified during z. Now either bc prefers M to M ′ or is indifferent between

them. Hence we obtain a contradiction to the choice of best blocking pair

for akp
during loop iteration z.
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Also (ac, bd) cannot block M |S in I|S , for any bd ∈ S and for any ac ∈ S

such that ac 6= akp
for each 0 ≤ p ≤ q − 1, for (I) ac is indifferent between

M and M∗, (II) either bd prefers M to M∗ or is indifferent between them,

and (III) M∗|S∗ is stable in I|S∗ .

Hence condition (ii) in the statement of the lemma is true.

In case (b), Algorithm satisfy is called during ℓ. This method clearly

terminates. By the induction hypothesis, if ai is assigned in M∗ then

M∗(ai) /∈ S. A similar remark holds for M∗(bj), if bj is assigned in M∗.

Hence condition (i) in the statement of the lemma holds. Also if (ai, bk)

blocks M |S in I|S , for some bk ∈ S\{bj}, then we contradict the fact that

Algorithm satisfy was called during ℓ, rather than Algorithm add. Similarly

(ak, bj) cannot block M |S in I|S , for some ak ∈ S\{ai}. Hence M |S is

stable in I|S at the termination of ℓ.

Thus the (r + 1)th loop iteration ℓ of Algorithm RVV terminates, and

at the end of ℓ, conditions (i) and (ii) in the statement of the lemma both

hold. Hence the overall result follows by induction. �

Theorem 2.7 ([516]). Let I be an instance of smi of size n, let m be

the number of acceptable pairs, and let M0 be an arbitrary matching in I.

Algorithm RVV applied to I and M0 produces a finite sequence of matchings

M0,M1, . . . ,Mt, where Mt is stable in I, and for each k (1 ≤ k ≤ t), Mk

is obtained from Mk−1 by satisfying a blocking pair of Mk−1. Moreover

Mt and an abbreviated representation of the intermediate matchings can be

obtained in O(nm) overall time, whilst the complexity is O(n2m) for an

explicit representation of all matchings. Finally, t ≤ 2nm.

Proof. During each iteration of Algorithm RVV, S increases in size by

either one or two elements. At the end of each such iteration, the invariant

M |S is stable in I|S holds by Lemma 2.6. Hence we are bound to ultimately

reach the outcome that M is stable in I, in which case Algorithm RVV

terminates. Moreover it is clear from the operation of the algorithm that,

for each k (1 ≤ k ≤ t), Mk is obtained from Mk−1 by satisfying a blocking

pair of Mk−1.

The complexity of the algorithm is obtained by observing that S in-

creases in size by a minimum of one element at each loop iteration of Al-

gorithm RVV. Since |S| ≤ 2n, it follows that the same upper bound applies

to the number of loop iterations of an execution of Algorithm RVV.

As noted in the proof of Lemma 2.6, each proposal–rejection sequence

during an execution of Algorithm add can involve at most m agents, given
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Algorithm 2.4 Algorithm ROM [410]

Require: smi instance I
Ensure: M is stable in I and can be obtained from ∅ by iteratively satisfying

blocking pairs
1: M := ∅;
2: S := ∅;
3: t := 0;
4: while S 6= U ∪W do

5: choose ai ∈ (U ∪W )\S; {agent ai “arrives”}
6: add(ai);
7: t++;
8: Mt := M ;
9: end while

that each acceptable pair can occur in a sequence at most once. With a

suitable choice of data structures, each proposal–rejection sequence can be

implemented to run in O(m) time if we discount the time required for the

assignment to Mt at line 16 during an iteration of the while loop. Also each

call to Algorithm satisfy takes O(1) time if we ignore for the moment the

time required for the assignment to Mt in line 10.

Thus an abbreviated representation of the sequence of constructed

matchings can be given in O(nm) overall time if we simply output the

blocking pairs that have been satisfied when transforming M0 to a stable

matching. The upper bound for the final value of t also follows. If an

explicit description of each matching in the sequence is required then the

complexity of Algorithm add becomes O(nm), that of Algorithm satisfy be-

comes O(n), and hence the overall time complexity bound for Algorithm

RVV increases to O(n2m). �

2.6.3 The Random Order Mechanism

Ma [410] argued that, in a decentralised market, it is more natural to as-

sume that agents arrive one at a time, rather than in pairs (as in Algorithm

RVV). He described a modification of Algorithm RVV that reflects this ob-

servation for the special case that M0 = ∅. Ma referred to his modification

as the Random Order Mechanism. Essentially, to obtain this algorithm

from Algorithm RVV, ensure that M = ∅ initially, the loop should iterate

as long as S 6= U ∪W , change line 5 to read “choose some ai ∈ U ∪W )\S”
and delete lines 7-10. For completeness, pseudocode for the Random Order

Mechanism is shown as Algorithm ROM, contained in Algorithm 2.4.
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Men’s preferences Women’s preferences
m1 : w1 w3 w2 w1 : m3 m2 m1

m2 : w2 w1 w3 w2 : m1 m3 m2

m3 : w3 w2 w1 w3 : m2 m1 m3

Fig. 2.3 An instance of sm of size 3 due to Gale and Shapley [235]

It is straightforward to modify Lemma 2.6 and Theorem 2.7 so that they

also hold for Algorithm ROM (ensuring that M0 is taken to be the empty

set in the statement of each of these results).

In the remainder of this section we consider the question as to which

stable matchings, for a given smi instance, can be reached by all possible

executions of Algorithm ROM. Here, the possible executions relate to the

“arrival orders” of the agents, i.e., the order in which they are chosen at

line 5 of Algorithm ROM.

As observed by Roth and Vande Vate [516], during Algorithm ROM, if all

the women arrive first followed by all the men, Algorithm ROM is equivalent

to the MEGS algorithm. Obviously if the men arrive first followed by the

women, we obtain the WEGS algorithm. Ma [410] showed that, for an

example sm instance of size 4 due to Knuth (see Fig. 2.1), 4 out of the

10 stable matchings can never be reached, regardless of the arrival order

of the agents. In fact, in order to show that not all stable matchings can

be reached in general, a simpler proof can be obtained by considering the

sm instance of size 3 due to Gale and Shapley [235], as shown in Fig. 2.3.

The fact that not all stable matchings can be reached for this instance is

established by the following result.

Theorem 2.8. Let I be the sm instance shown in Fig. 2.3. There is a

stable matching Me in I such that no execution of Algorithm ROM leads

to Me.

Proof. It is not difficult to verify that I has three stable matchings,

namely Ma, Me and Mz, in which each man has his first, second and third

choice respectively. We will show that Algorithm ROM fails to arrive at

Me starting from the empty matching, regardless of the arrival order of the

agents.

Let Q be some initial ordering of the agents, and let E be the execution

of Algorithm ROM with respect to Q. Let M be the stable matching

obtained upon termination of E. Suppose for a contradiction thatM = Me.

Suppose that m1 is last in Q; by the symmetry of the preference lists, the
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argument is similar if any other agent is last in Q. Let M∗ denote the stable

matching just prior to m1’s arrival during E. Then as (m1, w3) ∈ M ,

it follows that either (m2, w1) ∈ M∗ or (m3, w1) ∈ M∗, for otherwise

(m1, w1) ∈ M . Also either w3 is unassigned in M∗ or (m3, w3) ∈ M∗.

In the former case, (m3, w3) blocks M∗, and hence (m3, w3) ∈ M∗. Thus

(m2, w1) ∈ M∗. Then w2 is unassigned in M∗, and hence (m2, w2) blocks

M∗ just prior to m1 arriving, a contradiction. �

We remark that, in the context of the above theorem, the fact that Me

cannot be reached is no surprise, given the following observation of Blum et

al. [98] and Cechlárová [118]. Independently these authors showed that, for

the sm case, in the stable matching output by any execution of Algorithm

ROM, some agent obtains his/her best stable partner. With respect to Me,

since each agent obtains his/her second choice in that matching, whilst each

agent’s best stable partner is his/her first choice, it follows that Me cannot

be reached by Algorithm ROM.

In fact, Blum et al. [98] proved a more general result. To describe this,

following Biró et al. [81], we define an active phase of Algorithm ROM to be

an execution of Algorithm add in which the agent ai passed to the method

is involved in a blocking pair of M |S in I|S . For a given smi instance, Blum

et al. [98] showed that, in the stable matching output by Algorithm ROM, if

ai (respectively bj) is a proposer (received a proposal) and became assigned

during the last active phase, then ai (bj) receives his/her best (worst) stable

partner. Specifically, we can conclude that the last agent to arrive during

an active phase obtains his/her best stable partner, as observed by Blum

and Rothblum [99]. These authors also showed that, for a given agent ai
and for a fixed ordering of the other agents, ai can only improve his/her

outcome in the stable matching output by Algorithm ROM by deferring

his/her arrival time.

As Cechlárová [118] remarked, even if M is a stable matching in which

some agent has their best stable partner, it is possible that no execution of

Algorithm ROM produces M . Ma’s observation that 4 out of the 10 stable

matchings in Knuth’s sm instance (see Fig. 2.1) are unreachable does not

illustrate this, since no agent obtains their best stable partner in any of

these 4 stable matchings.

However, this phenomenon can be illustrated by considering the sm

instance shown in Fig. 2.4, and the following stable matching (both due to

Iain McBride [435]):

M = {(m1, w4), (m2, w3), (m3, w2), (m4, w1)}
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Men’s preferences Women’s preferences
m1 : w1 w4 w2 w3 w1 : m3 m4 m2 m1

m2 : w2 w3 w1 w4 w2 : m1 m3 m4 m2

m3 : w3 w4 w2 w1 w3 : m1 m2 m4 m3

m4 : w1 w3 w4 w2 w4 : m2 m4 m1 m3

Fig. 2.4 An instance of sm of size 4 due to McBride [435]

Clearly m4 has his best stable partner in M , however computer simulation

indicates that no execution of Algorithm ROM produces M . Experimenta-

tion also reveals [435] that there is no sm instance of size 3 that admits a

stable matching M such that (i) some agent has their best stable partner

in M , and (ii) no execution of Algorithm ROM produces M .

It is an open question to obtain a complete characterisation of the set of

stable matchings that can be reached by Algorithm ROM, for a given smi

instance. Indeed, related open problems are to determine the complexity

of the following two decision problems (the second of which is due to Péter

Biró) :

(1) given an sm instance I and a stable matching M , is there an execution

of Algorithm ROM that terminates with M?

(2) given an sm instance I, a matching M0 and a stable matching M , is

there an execution of Algorithm RVV that transforms M0 to M?

2.6.4 Other decentralised algorithms

In this subsection we discuss counterparts of Algorithm RVV that have been

formulated for other stable matching problems. We begin by mentioning

that, for the smi case, Abeledo and Rothblum [13] formulated a family

of decentralised algorithms for transforming an arbitrary matching to a

stable matching based on iteratively satisfying blocking pairs. This family

includes the Gale–Shapley algorithm, Algorithm RVV and Algorithm ROM

as special cases.

Ackermann et al. [30] categorised decentralised algorithms for smi into

better response dynamics and best response dynamics. The former descrip-

tion applies to mechanisms that are based on satisfying blocking pairs,

whilst the latter refers to a more specific mechanism where, should a block-

ing pair be satisfied, it is the best blocking pair for the active agent (i.e.,

the agent who makes the proposal). It is tempting to believe that Algo-

rithm RVV is an example of a best response dynamics, however this is not
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the case because the best blocking pair for a proposer is only selected from

among those agents who belong to S at that point in time. Ackermann

et al. [30] also considered random better response dynamics and random

best response dynamics. In the former case, a blocking pair is chosen uni-

formly at random, whilst in the latter case, a blocking pair that corresponds

to the best blocking pair for a given proposer is selected uniformly at ran-

dom. The authors gave exponential lower bounds for the convergence time

(i.e., the time to reach a stable matching, starting from a given matching) of

both the random better response dynamics and the random best response

dynamics in smi. Note that this result for the random better response

dynamics does not contradict Theorem 2.7, since Algorithm RVV is not

strictly speaking a random better response dynamics (it involves a random

choice of blocking pair at certain points, but not during an execution of

Algorithm add, for example).

Generalisations of Roth and Vande Vate’s results [516] to the sri case

have been given in various papers — see Sec. 4.3.6 for more details. Fur-

thermore, Biró et al. [81] extended many of the results obtained for the smi

case by Blum et al. [98], and by Blum and Rothblum [99], as described in

the previous subsection, to the sri setting.

Algorithm ROM may be extended to the hr case by using the fact

that, for a given instance I of hr, there is an instance J of smi such that

there is a 1–1 correspondence between the stable matchings in I and J .

This “cloning” operation is described in Ref. [261, p.38] (see also Ref. [514,

pp.131–132]). This approach was taken by Boyle and Echenique [110], who

showed that in the hr setting, the last agent to arrive obtains the best out-

come they could obtain in any stable matching (thus generalising an earlier

result of Blum et al. [98], and of Blum and Rothblum [99]). Klaus and

Klijn [390] showed that Algorithm RVV can be extended to the variant of

hr in which couples are allowed to submit joint preference lists (see Sec. 5.3

for more details), as long as the couples have so-called weakly responsive

preferences. Similarly Kojima and Ünver [398] showed that the same is true

for a many–many bipartite stable matching problem, as long as the pref-

erences of the agents on one side satisfy the so-called responsive property,

whilst agents on the other side have so-called substitutable preferences (see

Sec. 5.4.4 for more details). See also Refs. [116, 389].

Biró et al. [81] referred to the Roth–Vande Vate Mechanism [516]

(and by implication Algorithm ROM also) and the Tan–Hsueh algorithm

[559] (see Sec. 4.3.3) as incremental in nature, because they are applica-

ble in dynamic versions of bipartite and non-bipartite matching markets
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respectively, in which agents arrive and leave over time, and we require to

restore the stability of a given matching after each such change.

2.7 Median stable matchings

Recall from Chap. 1 that many important structural results are already

known for stable matchings. For example, Theorem 1.13 states that, in

a given sm instance, if each man picks the better of his partners in two

given stable matchings, the result is also a stable matching. Furthermore,

Theorem 1.20 indicates that, in a given sr instance, if we assign each agent

their “median choice” over their partners in three given stable matchings,

we obtain another stable matching. These two results are intriguing because

in each case it is by no means obvious that the set of pairs so constructed

should be a matching, let alone stable. However, it turns out that these

results can be generalised in a very unexpected way, giving rise to an even

more elegant structure. We describe recent developments concerning so-

called “median” stable matchings in this section, but first we require to

define some notation.

Let I be an sm instance where U is the set of men and W is the set

of women. Denote by S the set of stable matchings in I, and let T ⊆ S.
Suppose that s = |S| and t = |T |. For each agent ai ∈ U ∪ W , denote

by PT (ai) the multiset 〈M(ai) : M ∈ T 〉 of ai’s partners (with possible

repetitions) in the stable matchings in T , where PT (ai) has been sorted

according to ai’s preference list. Let pj,T (ai) denote the jth element in this

sorted multiset (1 ≤ j ≤ t).

To give an example of the notation defined so far, consider the sm

instance I8 of size 8 (due to Irving et al. [320]) as shown in Fig. 2.5. This

instance has 23 stable matchings, M1, . . . ,M23, as shown in Table 2.1 (the

partner of manmi in matchingMj is shown in the (i+1)th row and (j+1)th

column)8. The sorted multiset of partners of each man mi among all these

stable matchings is shown in the (i + 2)th row of Table 2.2. Note that

Tables 2.1 and 2.2 are due to Teo and Sethuraman [565]9.

Teo and Sethuraman proved the following surprising and beautiful

result.

Theorem 2.9 ([565]). Let I be an sm instance and let T be a set of stable

matchings in I. Assuming the notation defined above, let αj,T (respectively

8The rows involving the D(M) and ∆(M) values should be ignored for the time being.
9However we correct two small errors in their presentation of these tables (one in M19

and one in α14.
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Men’s preferences Women’s preferences
m1 : w3 w1 w5 w7 w4 w2 w8 w6 w1 : m4 m3 m8 m1 m2 m5 m7 m6

m2 : w6 w1 w3 w4 w8 w7 w5 w2 w2 : m3 m7 m5 m8 m6 m4 m1 m2

m3 : w7 w4 w3 w6 w5 w1 w2 w8 w3 : m7 m5 m8 m3 m6 m2 m1 m4

m4 : w5 w3 w8 w2 w6 w1 w4 w7 w4 : m6 m4 m2 m7 m3 m1 m5 m8

m5 : w4 w1 w2 w8 w7 w3 w6 w5 w5 : m8 m7 m1 m5 m6 m4 m3 m2

m6 : w6 w2 w5 w7 w8 w4 w3 w1 w6 : m5 m4 m7 m6 m2 m8 m3 m1

m7 : w7 w8 w1 w6 w2 w3 w4 w5 w7 : m1 m4 m5 m6 m2 m8 m3 m7

m8 : w2 w6 w7 w1 w8 w3 w4 w5 w8 : m2 m5 m4 m3 m7 m8 m1 m6

Fig. 2.5 An instance of sm of size 8 due to Irving, Leather and Gusfield [320]

βj,T ) denote the set of pairs obtained by assigning each man mi (woman

wi) to pj,T (mi) (pj,T (wi)), the jth element in the sorted multiset PT (mi)

(PT (wi))). Then each of αj,T and βj,T is a stable matching, and moreover

αj,T = βt−j+1,T .

In the above theorem, if t = 2 and j = 1, we obtain Theorem 1.13 in

the context of sm. Similarly if t = 3 and j = 2, we arrive at Theorem

1.20 in the sm setting. Finally, if T = S and j = 1, we obtain the man-

optimal stable matching in I. More generally, in the context of Theorem

2.9, αj,T (and indeed βt−j+1,T ) is referred to as the jth generalised median

stable matching of T . Note that the number of generalised median stable

matchings of T could be substantially smaller than t. For example, with

respect to instance I8, there are 9 generalised median stable matchings of

S, as follows:

{M1,M3,M8,M15,M18,M19,M20,M21,M22}.

A very special case of Theorem 2.9 occurs when j is chosen so that each

agent ai obtains his/her partner from the “middle” of PT (mi) in a precise

sense — such an αj,T is called a median stable matching of T . Specifically,

if t is odd then j = (t + 1)/2, i.e., α(t+1)/2,T is the unique median stable

matching of T . If t is even then in αt/2,T (respectively αt/2+1,T ), each

man obtains his lower (upper) median stable partner, whilst each woman

obtains her upper (lower) median stable partner in T . Cheng [144] defined

the median stable matchings of T in this case to be [αt/2,T , αt/2+1,T ], where

[Mp,T ,Mq,T ] = {M ∈ T : Mp,T � M � Mq,T },

and � is the dominance partial order on S from Definition 1.12.
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Table 2.1 The 23 stable matchings for the sm instance of size 8 shown in Fig. 2.5

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23

m1 w3 w1 w3 w3 w1 w1 w3 w1 w5 w1 w3 w5 w5 w1 w5 w5 w5 w5 w5 w7 w7 w1 w1

m2 w1 w3 w1 w1 w3 w3 w1 w3 w3 w4 w1 w4 w3 w4 w4 w4 w8 w8 w4 w8 w8 w4 w3

m3 w7 w7 w4 w7 w4 w7 w4 w4 w4 w3 w4 w3 w4 w3 w3 w1 w3 w1 w1 w1 w2 w3 w4

m4 w5 w5 w5 w8 w5 w8 w8 w8 w8 w5 w6 w8 w6 w6 w6 w8 w6 w6 w6 w6 w1 w8 w6

m5 w4 w4 w2 w4 w2 w4 w2 w2 w2 w2 w8 w2 w8 w8 w8 w2 w7 w7 w8 w3 w6 w2 w8

m6 w6 w6 w6 w5 w6 w5 w5 w5 w7 w6 w5 w7 w7 w5 w7 w7 w4 w4 w7 w4 w4 w5 w5

m7 w8 w8 w8 w6 w8 w6 w6 w6 w6 w8 w2 w6 w2 w2 w2 w6 w2 w2 w2 w2 w3 w6 w2

m8 w2 w2 w7 w2 w7 w2 w7 w7 w1 w7 w7 w1 w1 w7 w1 w3 w1 w3 w3 w5 w5 w7 w7

D(M) 98 85 83 85 70 72 70 57 60 71 73 61 63 61 64 74 79 92 77 111 132 58 60
∆(M) 10 9 9 9 8 8 8 7 6 7 7 5 5 5 6 6 7 8 7 9 10 6 6

Table 2.2 The stable partners of each man in preference order, allowing repetitions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
M1 M1 M1 M1 M3 M8 M8 M8 M8 M8 M8 M8 M22 M15 M15 M15 M15 M15 M19 M18 M18 M20 M21

m1 w3 w3 w3 w3 w3 w1 w1 w1 w1 w1 w1 w1 w1 w5 w5 w5 w5 w5 w5 w5 w5 w7 w7

m2 w1 w1 w1 w1 w1 w3 w3 w3 w3 w3 w3 w3 w4 w4 w4 w4 w4 w4 w4 w8 w8 w8 w8

m3 w7 w7 w7 w7 w4 w4 w4 w4 w4 w4 w4 w4 w3 w3 w3 w3 w3 w3 w1 w1 w1 w1 w2

m4 w5 w5 w5 w5 w5 w8 w8 w8 w8 w8 w8 w8 w8 w6 w6 w6 w6 w6 w6 w6 w6 w6 w1

m5 w4 w4 w4 w4 w2 w2 w2 w2 w2 w2 w2 w2 w2 w8 w8 w8 w8 w8 w8 w7 w7 w3 w6

m6 w6 w6 w6 w6 w6 w5 w5 w5 w5 w5 w5 w5 w5 w7 w7 w7 w7 w7 w7 w4 w4 w4 w4

m7 w8 w8 w8 w8 w8 w6 w6 w6 w6 w6 w6 w6 w6 w2 w2 w2 w2 w2 w2 w2 w2 w2 w3

m8 w2 w2 w2 w2 w7 w7 w7 w7 w7 w7 w7 w7 w7 w1 w1 w1 w1 w1 w3 w3 w3 w5 w5
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When T = S, we abbreviate αj,T by αj for any j (1 ≤ j ≤ s). We also

simply refer to the jth generalised median stable matching of T as the jth

generalised median stable matching, and the median stable matching(s) of

T as the median stable matching(s) (where the use of the plural depends on

whether s is odd or even). Moreover, we say that a given matching M is a

generalised median stable matching in I if M is the jth generalised median

stable matching in I for some j (1 ≤ j ≤ s). For example in I8, for T = S,
the median stable matching is α12, which is M8.

As the median stable matching assigns each agent to his/her (lower or

upper) median stable partner among a set of t stable matchings, it can be

considered to be a type of “fair” stable matching, giving a counterpart to

the notions of egalitarian, minimum regret, sex-equal and balanced stable

matchings (see Secs. 1.3.4.1 and 2.10.2). However, these latter four concepts

are very different from the notion of a median stable matching. Note, for

example, that in I8, there are two egalitarian stable matchings, namely M10

and M12 (each with cost 54), neither of which is even a generalised median

stable matching, let alone the median stable matching. On the other hand

M8, the median stable matching, has cost 58.

Cheng [143, 144] gave the following remarkable characterisation of gen-

eralised median stable matchings in terms of the rotation poset of a given

sm instance.

Theorem 2.10 ([143,144]). Let I be an sm instance, let R(I) be the set

of rotations in I, let T be a set of stable matchings in I, and let t = |T |.
For each M ∈ T , let SM denote the unique closed subset of rotations in

R(I) that corresponds to M (the existence of SM is established by Theorem

1.16). For each ρ ∈ R(I), let n̄ρ,T = |{M ∈ T : ρ /∈ SM}|. That is,

n̄ρ,T is the number of stable matchings in T whose corresponding closed

subset of rotations does not contain ρ. Then, for each j (1 ≤ j ≤ t),

R̄j,T (I) = {ρ ∈ R : n̄ρ,T < j} is a closed subset of R(I), and αj,T is

precisely the stable matching obtained by starting from the man-optimal

stable matching in I and eliminating every rotation in R̄j,T (I).

Parts of Theorem 2.10 were proved independently by Nemoto [461], for the

case that T = S; Nemoto referred to R̄j,T (I) as the jth level ideal of R(I).

We illustrate Theorem 2.10 with respect to I8 when T = S (recall that

s = |S| = 23). The rotations for I8, together with their corresponding n̄ρ,T

values, are shown in Table 2.3. The rotations are taken from [320] where

the rotation poset is also illustrated; for brevity we do not repeat it here.
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Table 2.3 The rotations for the sm instance I8 shown in Fig. 2.5, together
with their corresponding n̄ρ,T values

ρ1=(m1, w3), (m2, w1) n̄ρ1,T =5
ρ2=(m3, w7), (m5, w4), (m8, w2) n̄ρ2,T =4
ρ3=(m4, w5), (m7, w8), (m6, w6) n̄ρ3,T =5
ρ4=(m1, w1), (m6, w5), (m8, w7) n̄ρ4,T =13
ρ5=(m2, w3), (m3, w4) n̄ρ5,T =12
ρ6=(m4, w8), (m7, w6), (m5, w2) n̄ρ6,T =13
ρ7=(m3, w3), (m8, w1) n̄ρ7,T =18
ρ8=(m2, w4), (m5, w8), (m6, w7) n̄ρ8,T =19
ρ9=(m1, w5), (m5, w7), (m8, w3) n̄ρ9,T =21
ρ10=(m3, w1), (m7, w2), (m5, w3), (m4, w6) n̄ρ10,T =22

The correspondence between the closed subsets of the rotation poset and

the stable matchings in I8 is illustrated via the Hasse diagram HI8 for the

lattice of stable matchings in I8 shown in Fig. 2.6. Here an arc (Mi,Mj)

between two stable matchingsMi andMj indicates that Mi ≺ Mj (where ≺
is the partial order on stable matchings from Definition 1.12) and there is no

Mk ∈ S such that Mi ≺ Mk ≺ Mj (that is, Mi is an immediate predecessor

of Mj). Each arc (Mi,Mj) is annotated by the rotation ρ that is exposed

in Mi whose elimination from Mi yields Mj. Thus the closed subset of

rotations corresponding to a given Mi ∈ S is the set of rotations adjacent

to the arcs on the path from M1 to Mi in HI8 . Recall from Table 2.2

that α12 = M8. Theorem 2.10 states that the closed subset of rotations

corresponding to α12 is {ρ : n̄ρ,T < 12}. Table 2.3 in turn indicates that

this set is {ρ1, ρ2, ρ3}, which does indeed correspond to M8 as confirmed

by Fig. 2.6.

Cheng [143, 144] also studied the algorithmic complexity of computing

the jth generalised median stable matching, answering an open question

from Refs. [565] and [526]. Note that, when trying to formalise related

problem definitions, it is not immediately obvious how to specify the bounds

of j, given an sm instance I. It is not possible to merely insist that 1 ≤
j ≤ s, where s is the number of stable matchings in I, since the problem

of computing s is itself #P-complete [319]. Instead, it may be noted that

|R(I)| ≤ n(n− 1)/2 [261, Corollary 3.2.1], and hence the number of closed

subsets of R(I) (and by implication the number of stable matchings in I)

is at most 2n(n−1)/2. We follow Cheng’s convention and assume that, for

s < j < 2n(n−1)/2, αj is defined to be the woman-optimal stable matching

in I. With this in mind, Cheng [144] defined the following problems:
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Fig. 2.6 The lattice of stable matchings for the sm instance I8 shown in Fig. 2.5
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gen-median-1

Input : an sm instance I of size n and an integer j (1 ≤ j ≤ 2n(n−1)/2).

Solution: αj .

gen-median-(p, q)

Input : an sm instance I of size n.

Solution: α⌈ps/q⌉.

In the case of the second problem, p and q are two relatively prime

integers such that 1 ≤ p < q ≤ 2n(n−1)/2. The duals of each problem can

also be defined as follows: in the case of gen-median-1-dual, the input

is as for gen-median-1 and the solution is αs−j+1. Similarly in the case

of gen-median-(p, q)-dual, the input is as for gen-median-(p, q) and the

solution is αs−⌈ps/q⌉+1 . Cheng [144] proved the following results concerning

the computational complexity of the above problems:

Theorem 2.11 ([144]). gen-median-1 and gen-median-1 -dual are

#P-hard.

Theorem 2.12 ([144]). Let p and q be two relatively prime positive in-

tegers such that p < q. Then gen-median-(p, q) and gen-median-(p, q)

-dual are #P-hard.

Theorem 2.13 ([144]). Let I be an sm instance of size n and let j be

an integer such that 1 ≤ j ≤ 2n(n−1)/2. Then if j = O(log n), each

of gen-median-1 and gen-median-1-dual can be solved in polynomial

time.

Theorem 2.14 ([144]). Let I be an sm instance of size n. If the ro-

tation poset in I is a series–parallel poset, an interval order or a two-

dimensional poset, each of gen-median-(p, q) and gen-median-(p, q)-dual

can be solved in polynomial time, where p and q are two relatively prime

integers such that 1 ≤ p < q ≤ 2n(n−1)/2.

Theorem 2.12 indicates that the problem of finding αj in a given sm in-

stance I is #P-hard even if j = Θ(s), where s is the number of stable match-

ings in I. Also Theorem 2.13 implies that, by contrast, if j = O(log log s),

then αj can be found in polynomial time. Kijima and Nemoto [380]

strengthened these results by establishing the algorithmic complexity of

computing αj for cases “in between” j = O(log log s) and j = Θ(s). Specif-

ically, they proved the following.
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Theorem 2.15 ([380]). Let I be an sm instance with s stable matchings.

gen-median-1 and gen-median-1-dual can be solved in polynomial time

if j = O((log s)c) for some arbitrary constant c > 0.

Theorem 2.16 ([380]). Let I be an sm instance with s stable matchings.

gen-median-1 and gen-median-1-dual are #P-hard, even if j = Θ(s1/c)

for an arbitrary constant c ≥ 1.

Theorem 2.17 ([380]). Let I be an sm instance and let M be a matching

in I. The problem of deciding whether M is a generalised median stable

matching in I is #P-hard.

Kijima and Nemoto [380] also give randomised approximation schemes for

the problem of computing αj (1 ≤ j ≤ s), given an sm instance with s

stable matchings.

Theorems 2.11, 2.12 and 2.16 indicate the hardness of computing gener-

alised median stable matchings in general. This prompted Cheng [143,144]

to consider the complexity of approximating generalised median stable

matchings. She arrived at the following result, which also indicates what

is meant by an “approximate” generalised median stable matching. In

what follows, if S is the set of stable matchings in a given sm instance and

M1,M2 ∈ S, then [M1,M2] denotes the set {M ∈ S : M1 � M � M2}.

Theorem 2.18 ([144]). Let I be an sm instance of size n, and let s

be the number of stable matchings in I. Then, for any ε > 0 such

that ε = O(log s/s), we may construct in O(n2) time a stable matching

M in
[

α⌈ εs
2 ⌉, α⌈s− εs

2
+ 1

2⌉
]

. Such a matching M is referred to as an ε-

approximation to a median stable matching in I.

Cheng [144] also characterised median stable matchings in terms of me-

dians in the distributive lattice of stable matchings in a given sm instance

I. Formally, suppose that S is the set of stable matchings in I, and HI is

the Hasse diagram of S under �. Given two stable matchings M and M ′

in S, define d(M,M ′) to be the length of a shortest path between M and

M ′ in the undirected version of H. Let D(M) = ΣM ′∈Sd(M,M ′). Then a

median of (S,�) is a stable matching M ∈ S such that D(M) is minimum,

taken over all stable matchings in I. Cheng [144] proved the following:

Theorem 2.19 ([144]). Let I be an instance of sm where S is the set of

stable matchings, and let s = |S|. If s is odd then α(s+1)/2 is precisely the
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median stable matching in (S,�). If s is even then the stable matchings

in the interval [αs/2, αs/2+1] are precisely the median stable matchings in

(S,�).

Cheng [144] remarked that a median of (S,�) is fair in a global sense, whilst

each agent being matched to either their lower or upper median stable part-

ner among a set of stable matchings is fair in a local sense. Theorem 2.19

thus states that stable matchings are “globally median” if and only if they

are “locally median” in the senses indicated. This is a quite remarkable ob-

servation, which Cheng and Lin [146] referred to as the local/global median

phenomenon of stable matchings. By way of illustration, Table 2.1 shows

the D(M) values for the stable matchings in the sm instance I8 given in

Fig. 2.5, which confirms that D(M8) is minimum (recall that α12 = M8 is

the median stable matching in I8).

Theorem 2.19, combined with Theorems 2.11, 2.12 and 2.16, show that

computing this type of “globally fair” stable matching in (S,�) is hard.

With this in mind, Cheng et al. [149] defined another type of “globally fair”

stable matching as follows. A center stable matching is a stable matching

M ∈ S that minimises ∆(M), the maximum distance (in the undirected

version of HI) from M to all other stable matchings in S. Cheng et al.

[149] proved that a center stable matching (which need not be unique) can

be found in O(n5) time, where n is the size of I. Moreover, they showed

that this type of globally fair stable matching is an approximation to a

locally median stable matching in the following sense: there exists a set

T ⊆ S, where the stable matchings in T form a maximum-length chain

in (S,�), such that, if t = |T |, α(t+1)/2,T is a center stable matching of I

if t is odd, and αt/2,T and αt/2+1,T are center stable matchings of I if t

is even10. Again, to illustrate the results described here, Table 2.1 shows

the ∆(M) values for the stable matchings in the sm instance I8 given in

Fig. 2.5. They imply that M12, M13 and M14 are center stable matchings

in I8. Let T be the following maximum-length chain of size 11 in (S,�):

{M1,M4,M7,M11,M23,M14,M15,M17,M18,M20,M21}.
Then it may be verified that α6,T = M14, and M14 is indeed a center stable

matching of I as previously observed.

Note that additional structural and algorithmic results relating to

generalised median stable matchings in the sm context appear in Refs.
10Cheng et al. did not include the second subscript (involving T ) on α(t+1)/2,T , αt/2,T
and αt/2+1,T when stating these results in Ref. [149], however those subscripts are in
fact necessary [145].
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[143, 144, 380]. Generalised median stable matchings have been considered

in the context of other stable matching problems. Fleiner [210] generalised

Theorem 2.9 to the many–many bipartite case. Also, independently, Sethu-

raman et al. [526], and Klaus and Klijn [388, 391], generalised the same

theorem to the hr case. Cheng [144, Sec. 6] discussed the extension of her

results to other stable matching problems, including smi and hr. Median

stable matchings have also been considered in the context of sm with side

payments [522].

Results concerning median stable matchings in the sr setting are de-

scribed in Sec. 4.4. We conclude with two open problems, due to Kijima

and Nemoto [380]. They asked whether the following two decision problems

belong to the class NP: (1) given an sm instance I and a stable matching

M in I, determine whether M is a generalised median stable matching in

I; (2) given an sm instance I with s stable matchings, a stable matching

M in I, and an integer j (1 ≤ j ≤ s), determine whether M is the jth

generalised median stable matching in I.

2.8 Size versus stability

In the 2006–07 run of SFAS, the Scottish medical matching scheme (see

Sec. 1.3.7) [604], there were 781 students and 53 hospitals, the latter having

total capacity 789. The matching algorithm (designed and implemented at

the the School of Computing Science, University of Glasgow) found a stable

matching of size 744, thus leaving 37 students unassigned. Clearly stability

is the key property to be satisfied, and it is this that restricts the size of

the resultant matching. Nevertheless the administrators asked whether,

were the stability criterion to have been relaxed, a larger matching could

have been found. We found that a matching of size 781 did exist, but the

matching we computed admitted 400 blocking pairs.

In practical situations, a blocking pair of a given matching M need

not always lead to M being undermined, since the agents involved might

be unaware of their potential to improve relative to M . For example, in

situations where preference lists are not public knowledge, there may be

limited channels of communication that would lead to the awareness of

blocking pairs in practice. Nevertheless, it is reasonable to assert that the

greater the number of blocking pairs of a given matching M , the greater

the likelihood that M would be undermined by a pair of agents in practice.

In particular, a maximum cardinality matching for the 2006–07 SFAS data
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that admits only 10 blocking pairs might be considered to be “more stable”

than one with 400 blocking pairs. This motivates the problem of finding a

maximum matching that admits the smallest number of blocking pairs (and

is therefore, in the sense described above, “as stable as possible”). Eriksson

and Häggström [195] also argued that counting the number of blocking pairs

of a matching can be an effective way to measure its degree of instability;

this approach had already been taken in earlier references [378, 466, 199].

An alternative method is to count the number of blocking agents (i.e., the

number of agents who are involved in a blocking pair) [519, 195].

Further practical applications of “almost stable” maximum matchings

arise in similar bipartite settings, where the size of the matching may be

considered to be a higher priority than its stability in a particular match-

ing market. Examples include school placement [7] and the allocation of

students to projects in a university department [23]. Furthermore, the US

Navy has a bipartite matching problem involving the assignment of sailors

to billets [490,589] in which every sailor should be matched to a billet, and

meanwhile there are some critical billets that cannot be left vacant.

In non-bipartite contexts, applications arise in the context of construct-

ing pairwise kidney exchanges (see Sec. 1.4.6), where preference lists are

constructed on the basis of compatibility profiles between donors and pa-

tients. In most matching schemes, the main goal is to maximise the number

of transplants (i.e., the first priority is to find a maximum matching) [512].

However the stability of the matching could also be an issue [511]. Another

example in a non-bipartite setting involves pairing up chess players [401].

Given an instance I of smi, let M denote the set of matchings in I

and let M+ denote the set of maximum matchings in I. Given a matching

M ∈ M, let bp(I,M) (respectively ba(I,M)) denote the set of blocking

pairs (respectively blocking agents) with respect to M in I (we omit the

first argument I when the instance is clear from the context). Clearly

M ∈ M is stable in I if and only if bp(I,M) = ∅, which in turn is true if

and only if ba(I,M) = ∅. Let

bp+(I) = min{|bp(I,M)| : M ∈ M+}

and let

ba+(I) = min{|ba(I,M)| : M ∈ M+}.

Define max size min bp smi (respectively max size min ba smi) to be

the problem of finding, given an smi instance I, a matching M ∈ M+ such

that |bp(I,M)| = bp+(I) (respectively |ba(I,M)| = ba+(I)).
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Men’s preferences Women’s preferences
m1 : w2 w1 w1 : m1

m2 : w2 w2 : m1 m2

Fig. 2.7 An instance of smi of size 2

To illustrate this problem, consider the smi instance I shown in

Fig. 2.7. Clearly M = {(m1, w2} is the unique stable matching and

M+ = {(m1, w1), (m2, w2)} is the unique maximum cardinality matching.

Hence bp+(I) = 1 and ba+(I) = 2.

It turns out that each of max size min bp smi and max size min

ba smi are NP-hard and very difficult to approximate, as indicated by the

following result.

Theorem 2.20 ([93]). Each of max size min bp smi and max size min

ba smi is not approximable within n1−ε, where n is the size of a given

instance, for any ε > 0, unless P=NP.

We can also define max size exact bp smi (respectively max size exact

ba smi) to be the problem of finding, given an smi instance I and an

integer K, a matching M ∈ M+ such that |bp(I,M)| = K (respectively

|ba(I,M)| = K). It turns out that both problems are NP-hard if K is part

of the problem input, but solvable in polynomial time if K is a fixed integer

[93].

We now consider preference lists of fixed length. Given two integers p

and q, let max size min bp (p, q)-smi (respectively max size min ba (p, q)

-smi) denote the restriction of max size min bp smi (respectively max

size min ba smi) in which each man’s preference list is of length at most

p, and each woman’s list is of length at most q. We use p = ∞ or q = ∞ to

denote the possibility that the men’s lists or women’s lists are of unbounded

length, respectively.

Biró et al. [93] showed that each of max size min bp (3, 3)-smi and max

size min ba (3, 3) -smi is not approximable within δ, for some constant

δ > 1, unless P=NP. Hamada et al. [274] extended the reduction used

to prove these results in order to strengthen the inapproximability lower

bound for the first problem, as stated by the following theorem.

Theorem 2.21 ([274]). max size min bp (3, 3)-smi is not approximable

within n1−ε, where n is the size of a given instance, for any ε > 0, unless

P=NP.
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For preference lists of length at most 2 on one side, it turns out that the

above problems are solvable in polynomial time. In fact, this is even true for

instances of smti with respect to weak stability, as stated by the following

result.

Theorem 2.22 ([93]). Each of max size min bp (2,∞) -smti and max

size min ba (2,∞) -smti is solvable in O(n3) time, where n is the size of

a given instance.

Floréen et al. [220] considered a slightly different definition of an “almost

stable” matching in a distributed model of computation. They defined

a matching M in an smi instance I to be ε-stable, for some ε > 0, if

|bp(I,M)| ≤ ε|M |. The authors showed that an ε-stable matching can be

found in at most 4 + 2k2/ε synchronous communication rounds, assuming

that each preference list is of length at most k, for some constant k.

We close this section by noting that Biermann [75] argued that counting

the number of blocking pairs as a measure of the instability of a match-

ing may not necessarily be appropriate. He reasoned that, for example,

a matching M such that |bp(M)| = 20 and where bp(M) itself forms a

matching, could be said to be more “unstable” than a matching M ′ where

|bp(M ′)| = 50 and a single agent belongs to every pair of bp(M ′). This is

simply due to the fact that all the blocking pairs in bp(M) can be satisfied

simultaneously, whereas only one from bp(M ′) can be. Biermann defined

the notion of a permissible set of blocking pairs and proved that a match-

ing M is stable if and only if its set of permissible blocking pairs is empty.

He proposed that the cardinality of the set of permissible blocking pairs

relative to M be used as the measure of M ’s degree of instability.

2.9 Strategic issues

In this section we consider various strategic results relating to sm and smi—

these mainly centre around the question as to whether an individual agent,

or some coalition of agents, can falsify their preference list/s (typically by

permuting some entries and/or truncating their list) so as to obtain a better

partner (with respect to the true preferences) than they would obtain in

either the man-optimal or woman-optimal stable matchings. Chapter 4 of

Ref. [514] and Sec. 1.7 of Ref. [261] describe the main results under this

heading up to around 1990. We update the reader on subsequent results

in this section, concentrating mainly on those that have an algorithmic
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flavour. However in order to describe more recent work, it is necessary to

briefly recap on some of the key older strategic results.

In a matching market modelled by sm or smi, ideally there would exist

a mechanism for constructing a matching in which it is a dominant strategy

[514, p.84] for each agent to report his/her true preferences, regardless of

whether the other agents are doing likewise. (That is, the best outcome

for each agent would be obtained by telling the truth, no matter whether

the other agents are doing so.) Such a mechanism is called a strategy-proof

mechanism (also known as a truthful mechanism). Roth [496] showed that,

with respect to the man-oriented Gale–Shapley algorithm, it is a dominant

strategy for the men to tell the truth. On the other hand he showed that,

more generally, there is no mechanism for sm for which it is a dominant

strategy for all agents to be truthful, and hence there is no strategy-proof

mechanism for sm.

To describe strategic results for sm in more detail, let I be an sm instance

representing the true preferences of the agents, and letMa (respectivelyMz)

denote the man-optimal (respectively woman-optimal) stable matching in

I. Let C be a coalition of agents who falsify their preferences, and denote

by I ′ the preference lists that result (each agent not in C has the same

preference list in I and I ′).

Dubins and Freedman [173] proved that there is no coalition C of men

who could falsify their preferences so as to yield a matchingM ′ that is stable

in I ′ such that every man in C has a better (with respect to I) partner inM ′

than in Ma. Roth [496] independently proved this for the special case that

C comprises a single man. Demange, Gale and Sotomayor [164] extended

Dubins and Freedman’s result to the case where C can include both men

and women as follows. They proved that there is no stable matching M ′ in

I ′ such that every member of C prefers (in I) their partner in M ′ to their

partner in every stable matching in I. If incomplete lists are permitted,

Gale and Sotomayor [236] proved that, as long as two stable matchings

in I exist, then we can choose C to contain a single woman who could

falsify her preferences so as to yield a better (with respect to I) partner

than in Ma. They also showed that if C is the set of all women, then each

woman can truncate her preference list so as to force the man-oriented

Gale–Shapley algorithm to yield Mz in I ′ (rather than yielding Ma in I).

Further truncation strategies are described in Ref. [509, 186].

Gusfield and Irving [261, p.65] observed that, up to the time of

writing, cheating strategies for women with respect to the man-oriented

Gale–Shapley algorithm had been restricted to preference list truncation.
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However they gave an example to show that, in an sm instance, a single

woman could permute her preference list so as to obtain a better (in I)

partner with respect to the man-oriented Gale–Shapley algorithm. That is,

with respect to the above notation, C contains a single woman who per-

mutes her list so as to force the man-oriented Gale–Shapley algorithm to

yield Mz 6= Ma in I ′ (rather than yielding Ma in I)11.

We now turn to results published after Ref. [261]. Roth and Vande Vate

[517] considered the incentives to cheat for agents in an instance of sm when

a decentralised mechanism such as the Roth–Vande Vate Mechanism [516]

(see Sec. 2.6) is used.

Teo et al. [567] considered the sm setting and, in particular, the case

where there is a single woman w who knows the preferences of all other

agents, which are declared truthfully. They showed how to construct, in

polynomial time, an optimal cheating strategy for w relative to the man-

oriented Gale–Shapley algorithm. However, interestingly, they showed in

simulations that it is relatively unlikely that a woman could benefit by

cheating. In particular, they generated 1000 random instances of size 8

and found that, for 74% of these, the deceitful woman did not improve

from the partner that she would obtain in Ma (the man-optimal stable

matching with respect to the true preferences), and on average, only 5.1%

of women did improve by cheating. The authors also presented a discussion

of school placement in Singapore, arguing that a mechanism based on stable

matching would be more appropriate than the algorithm that was in place

at the time of writing.

Immorlica and Mahdian [302] showed that, for an smi instance in which

the men’s preferences are of length at most k, for some constant k, and each

is drawn from an arbitrary probability distribution of the women, and the

women’s preferences are arbitrary and complete, the number of participants

with more than one stable partner is vanishingly small. As a consequence

of this, for a given agent, his/her best strategy is to be truthful assuming

that all other agents have been truthful.

Huang [285] considered instances of sm and exploited a loophole in the

Dubins–Freedman theorem [173]. He defined a cabal C0 to be a k-tuple of

men 〈m0,m1, . . . ,mk−1〉, for some k, such that, for each i (0 ≤ i ≤ k − 1),

11The example given by Gusfield and Irving on page 65 of Ref. [261] is a contradiction
to Theorem 1.7.2 in their book (for the case that the chosen coalition contains a single
woman and no men). On page 65 of Ref. [261], Theorem 1.7.2 is attributed to Demange
et al. [164], but in fact this is an incorrect statement of the main result in the latter
paper.
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mi prefers Ma(mi−1) to Ma(mi), where addition is taken modulo k (and

Ma is the man-optimal stable matching). Huang showed that if a cabal

exists relative to Ma, then there exists a coalition C ⊇ C0 of men who

can falsify their preferences such that (i) each man in the cabal is better

off (with respect to I) in M ′ relative to Ma and (ii) each man outside the

cabal has the same partner in M ′ and Ma, where M ′ is the man-optimal

stable matching in the sm instance I ′ so obtained. Huang [284] gave a

polynomial-time algorithm for constructing such a coalition if it exists. He

also showed that this strategy is the only one in which no deceitful agent is

worse off. Huang then suggested a randomised coalition strategy in which

every man in C has a chance to obtain a better partner, whilst no man is

worse off, though proved that such a strategy is unrealisable. If, however,

some of the men in C are allowed to be worse off, then Huang constructed

a randomised strategy in which every man in C can expect to obtain a

better partner.

Kobayashi and Matsui [395] studied problems concerned with enabling

a coalition C of women to construct a cheating strategy that would force

the man-oriented Gale–Shapley algorithm to return a matching in which

the women in C obtain a desired set of partners. The first problem that

the authors considered has the following input: (i) a set of n men and n

women, (ii) for each man, a strict preference list over all n women, (iii) a

partial matching M of the men and women, and (iv) for each woman who

is unassigned in M , a strict preference list over all n men. Let C be the set

of women who are assigned in M . The problem is to find, for each woman

in C, a strict preference list over all n men such that, for the overall sm

instance (including the preference lists described in the input) obtained,

the man-oriented Gale–Shapley algorithm constructs a stable matching M ′

containing M , or else reports that no such set of preference lists exists.

Kobayashi and Matsui showed that this problem is solvable in O(n2) time.

Additionally, the problem is solvable in O(n2) time if, in (iii), M is a

perfect matching of the n men and n women, and in (iv), there is a set C′

of women (possibly empty), each of whom has a preference list over the n

men. Letting C = W\C′ (where W is the set of women), the remainder

of the problem is as before. By contrast, in the description of the first

problem in the previous paragraph, if (iv) is no longer part of the input,

and C comprises all women, the authors showed that the corresponding

problem is NP-hard. For further work along these lines, see Ref. [552].

Matsui [432] considered the following strategic game involving an sm

instance. We are given a set of n men with true preferences over a set of n
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women. In a given round of the game, each woman chooses a preference list

over the n men. The outcome for a woman is the partner that she receives

in the man-optimal stable matching with respect to the men’s (true) pref-

erences and the women’s preferences as determined by their joint strategy.

Matsui gave an O(n2) algorithm to determine whether, given a matching

M , there is a joint strategy for the women that forms an equilibrium such

that M is the overall outcome of the game. He also gave an O(n4) algo-

rithm to determine whether a given joint strategy for the women forms an

equilibrium or not.

Pini et al. [478] defined a stable matching mechanism for sm to be

manipulable if there exists an agent who could falsify their preferences so

as to obtain a better partner than they would obtain, were the mechanism

to be executed with respect to the true preferences. They argued that,

despite the earlier observation by Roth [496] that every stable matching

mechanism for sm is manipulable, it might in fact be NP-hard to compute

a manipulation. Such a complexity result could then indicate that there is

at least some difficulty in arriving at a cheating strategy, even if we know

that one is possible.

Teo et al.’s result [567] described earlier indicates that the man-oriented

Gale–Shapley algorithm can be manipulated in polynomial time. More

generally, Pini et al. [478] defined instances of sm that are universally ma-

nipulable by some woman w. Such instances can also be manipulated in

polynomial time. In particular, given an sm instance I and a woman w

such that I is universally manipulable by w, and given any stable matching

mechanism A for I, there is a polynomial-time strategy that allows w to

permute her preference list so as to arrive at an sm instance I ′, such that

A applied to I ′ gives w the partner that she obtains in the woman-optimal

stable matching in I. On the other hand, the authors showed that, for

general sm instances, there is a stable matching mechanism for which it is

NP-hard to find a manipulation.

Inoshita et al. [305] observed that, with respect to the man-optimal

stable matching Ma in a given sm instance I, some men may have partners

relatively far down their preference lists. They considered the problem of

finding a single man mi who is allowed to falsify his preference list, so as to

produce an sm instance I ′, such that (i) relative to I, no man has a worse

partner in M ′
a than in Ma, and (ii) cU (Ma)− cU (M ′

a) is maximum, taken

over all possible preference list falsifications by a single man, where M ′
a is

the man-optimal stable matching in I ′, and each of cU (Ma) and cU (M ′
a)

are measured relative to I. That is, we wish to find some permutation
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of the preference list of a single man mi which leads to an instance I ′ in

which the man-optimal stable matchingM ′
a in I ′ gives the maximum overall

improvement for the men (in terms of the sum of the ranks of their partners,

with respect to the true preferences) compared to the man-optimal stable

matching Ma in I, subject to the constraint that no man is worse off in

M ′
a than in Ma (again, relative to the true preferencs). Note that, by the

result of Dubins and Freedman, Ma(mi) = M ′
a(mi) for any such man mi.

The authors gave an O(n3) algorithm for this problem which outputs

a single man mi and his modified list that leads to the largest overall im-

provement for the men (which may be 0), where n is the size of I. However

if we only want to know whether there exists a man mi who can lead to a

positive overall improvement for the men, then this problem can be solved

in O(n2) time.

We also remark that Sönmez [538, 539] considered methods of manip-

ulation by hospitals in an instance of hr. He showed in Ref. [538] that

any stable matching mechanism for hr is open to manipulation by hospi-

tals under-reporting their capacities. In a later paper [539] he dealt with

another form of strategic behaviour by hospitals and proved that no sta-

ble matching mechanism for hr is resistant to manipulation by a hospital

pre-arranging some set of desired assignees prior to the execution of the

mechanism.

The study of strategic issues was extended to sr by Huang [286]. For

a solvable sr instance I, Huang proved that there exists no sr instance

I ′, obtained from I by a single deceitful agent a falsifying her preferences,

that admits a stable matching M ′ in which a obtains a better partner

(with respect to I) than her best stable partner in I. More generally, this

result extends to coalitions of agents in the following way. Let M be a

stable matching in I in which each member of a non-empty coalition of

agents C obtains her best stable partner. Then there exists no sr instance

I ′, obtainable from I by the agents in C falsifying their preferences, that

admits a stable matching M ′ in which every agent in C obtains a better

partner (with respect to I) in M ′ than in M .

2.10 Further results

2.10.1 The Stable Marriage problem with Forbidden pairs

A natural generalisation of sm was considered by Dias et al. [168], namely

the Stable Marriage problem with Forced and Forbidden pairs (smff). An
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instance I of smff comprises a standard sm instance, together with a set

P of forbidden pairs and a set Q of forced pairs. In I, a matching M is

defined to be stable if (i) M ∩ P = ∅ and Q ⊆ M , and (ii) M is stable in

the underlying sm instance obtained by ignoring the forbidden and forced

pairs. Such a matching may not exist, of course.

We denote the special case of smff in which P = ∅ by the Stable Mar-

riage problem with Forced pairs (smfd). Similarly the restriction of smff

in which Q = ∅ is called the Stable Marriage problem with Forbidden pairs

(smf). Knuth [394] described an O(n2) algorithm for smfd, where n is the

size of the underlying sm instance. Gusfield and Irving [261, Sec. 3.4.2] gave

a polynomial-time checkable necessary and sufficient condition for a set Q

of forced pairs to be part of a stable matching in an sm instance. This leads

to an O(|Q|2) algorithm for smfd, following O(n4) pre-processing time.

For smff, Dias et al. [168] showed that the problem of finding a sta-

ble matching or reporting that none exists, given an instance of smff, is

solvable in O((|P |+ |Q|)2) time, following O(n4) pre-processing time. The

authors also gave a simple reduction from smff to smf as follows: given an

instance I of smff in which W is the set of women, P is the set of forbidden

pairs and Q is the set of forced pairs, we construct an instance I ′ of smf in

which P ′ is the set of forbidden pairs, as follows:

P ′ = {(mi, wk) : (mi, wj) ∈ Q ∧ wk ∈ W\{wj}}.

Clearly a matching M is a solution for I if and only if M is a solution for I ′.

However, |P ′| = |P |+(n− 1)|Q|, where n = |W |, and hence the blow-up in

the number of forbidden pairs produced by this reduction justifies applying

the O((|P | + |Q|)2) time (following O(n4) pre-processing time) algorithm,

as described above, to I, rather than to I ′.

The algorithm described in the previous paragraph can be useful if many

sets of forced and forbidden pairs are given with respect to the same sm

instance, as the pre-processing step need only be carried out once. How-

ever suppose we are only interested in a single set of forbidden pairs in an

instance I of smf. Dias et al. [168] gave an O(n2) algorithm for finding

a stable matching or reporting that none exists in I. They also showed

that all the stable pairs in I can be found within the same time bound.

Finally, the authors proved that all stable matchings in I can be listed in

O(n2 + n|S|) time and O(n2) space, where S is the set of stable matchings

in I. That is, the first stable matching can be output in O(n2) time, and

each subsequent stable matching can be output in O(n) time. For further

results concerning smf, see Sec. 4.8.2.
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We give some motivation for smff. In the context of a centralised

matching scheme, a forced pair might represent an arrangement that has

been made for two participants prior to the matching run — perhaps due to

certain special circumstances — that must be respected in a final solution.

By contrast, a forbidden pair may be supplied by an administrator in order

to prevent a given pairing from appearing in a constructed matching, for

whatever reason. Note that, although smf superficially resembles smi (that

is, we may be tempted to simply delete the forbidden pairs from the relevant

agents’ preference lists, since they cannot form part of a stable matching),

there is a clear distinction. Namely, in the smf context, a forbidden pair can

still be a blocking pair of a matching. Again, this is reasonable in practical

applications, for even if an administrator tries to prevent a pairing (mi, wj)

from being part of a constructed matching, it could still be the case that mi

and wj would prefer to make a private arrangement outside of the matching

than to remain with their partners.

2.10.2 Balanced stable matchings

A stable matching M in an smi instance I is said to be balanced [201] if

b(M) = max{cU (M), cW (M)} is minimum, taken over all stable matchings

in I, where U is the set of men and W is the set of women in I. (Here we are

assuming notation defined in Sec. 1.3.4.1.) Thus the notion of a balanced

stable matching gives a further concept of a stable matching that is “fair”

to both sexes; previously in this respect we have considered egalitarian and

minimum regret stable matchings (see Sec. 1.3.4.1, [261] and Sec. 2.2.10),

sex-equal stable matchings (see Secs. 1.3.4.1 and 2.2.7) and median stable

matchings (see Sec. 2.7).

It is non-trivial to construct an sm instance in which no balanced stable

matching is a sex-equal stable matching, and vice versa. In fact we construct

an instance I of size 5r+3, due to Eric McDermid [438], that satisfies this

property, for any r ≥ 1. In I, the set of men is

U = {m0, . . . ,m5r−1, p1, p2, p3},

and the set of women is

W = {w0, . . . , w5r−1, q1, q2, q3}.

The preference list of each person is shown in Fig. 2.8. In a given person’s

list, the symbol “. . . ” denotes all remaining members of the opposite sex

listed in arbitrary strict order; also addition is taken modulo 5r. Clearly
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Men’s preferences
mi : wi q1 q2 q3 wi+1 . . . (0 ≤ i ≤ 5r − 1)
pi : qi . . . (1 ≤ i ≤ 3)

Women’s preferences
wj : p1 p2 mj−1 mj . . . (0 ≤ j ≤ 5r − 1)
qj : pj . . . (1 ≤ j ≤ 3)

Fig. 2.8 An instance of sm due to McDermid [438]

(pi, qi) ∈ M for 1 ≤ i ≤ 3, where M is any stable matching in I. As a

result it is not difficult to see that there are only two stable matchings in

I, namely the man-optimal stable matching Ma and the woman-optimal

stable matching Mz, where

Ma = {(mi, wi) : 0 ≤ i ≤ 5r − 1} ∪ {(pi, qi) : 1 ≤ i ≤ 3}
Mz = {(mi, wi+1) : 0 ≤ i ≤ 5r − 1} ∪ {(pi, qi) : 1 ≤ i ≤ 3}

It may be verified that |d(Ma)| = 15r and b(Ma) = 20r + 3, whilst

|d(Mz)| = 10r and b(Mz) = 25r + 3. Thus Mz is the unique sex-equal

stable matching, whilst Ma is the unique balanced stable matching.

Feder [201] showed that the problem of finding a balanced stable match-

ing is NP-hard, though approximable within a factor of 2. McDermid [438]

showed that, in the smi context, this performance guarantee can be im-

proved when preference lists are of bounded length, as indicated by the

following result.

Theorem 2.23 ([438]). Let I be an instance of smi where k is the length

of the longest preference list. Then the problem of computing a balanced

stable matching is approximable within 2− 1
k .

Proof. Let U and W be the sets of men and women in I respectively,

and let n be the size of I. Let M be an egalitarian stable matching and let

M ′ be a balanced stable matching in I. Without loss of generality suppose

that cU (M) ≥ cW (M).

We firstly note that b(M ′) ≤ cU (M), for otherwise b(M) < b(M ′),

a contradiction. We next note that b(M ′) ≥ (cU (M) + cW (M))/2, for

otherwise

c(M ′) = cU (M ′) + cW (M ′) ≤ 2b(M ′) < cU (M) + cW (M) = c(M),

a contradiction.
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Hence cU (M) ≤ 2b(M ′) − cW (M). Recall from our earlier assumption

that cU (M) ≥ cW (M). Hence

b(M) = cU (M) ≤ 2b(M ′)− cW (M) = b(M ′)(2 − cW (M)/b(M ′)).

Trivially, we note that cW (M) ≥ n. If all preference lists are of length at

most k, then b(M ′) ≤ cU (M) ≤ nk. Hence cW (M)/b(M ′) ≥ 1
k and the

result follows. �

2.10.3 Rationalizing matchings

Echenique [181] considered the problem of determining whether a set of

matchings M is rationalizable. Informally, this concerns whether we can

find an smi instance I in which each matching in M is stable. Formally, M
is rationalizable if and only if there is an smi instance I such that M ⊆ S,
where S is the set of stable matchings in I.

Suppose that U = {m1, . . . ,mn1
} andW = {w1, . . . , wn2

} are the sets of
men and women collectively assigned in the matchings in M, respectively.

We may assume that each member of U ∪W is assigned in every matching

in M, for if the matchings in M are to be stable in I, the Rural Hospitals

Theorem (Theorem 1.11) implies that any agent who is unassigned in one

matching inM is unassigned in all matchings inM. Thus if this property is

not satisfied, we can simply report that M is not rationalizable. Otherwise,

we can thus assume that n1 = n2 = n. Moreover, by Proposition 1.15, we

lose no generality in insisting that I is an sm instance of size n.

Echenique showed that if n ≥ 3 and M is the set of all possible bipartite

matchings between U and W , then M is not rationalizable. However he

gave a simple example of a set of matchings M that is rationalizable,

namely the case where M(mi) 6= M ′(mi) for all i (1 ≤ i ≤ n) and for

all distinct matchings M,M ′ ∈ M. Echenique illustrated the construction

used in the proof of this result; in doing so he pointed out that the sm

instance I constructed has a set of stable matchings S where M ⊂ S. He

remarked that if one requires that M = S, different techniques to those

employed in his paper seem to be required, and he did not pursue this

variant of the problem further. A related problem, as also described by

Echenique, is to find an sm instance I of size n such that M ⊆ S, where
|S| is minimum, or else report that no such I exists.

Echenique gave a polynomial-time checkable necessary condition for a

set of matchings to be rationalizable. He also gave a necessary and suffi-

cient condition, however it is unlikely that this can be verified in polynomial
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time, given the following result of Kalyanaraman and Umans [353]. Define

rationalizability to be the decision problem which takes as input a set

M of matchings involving n men and n women, and asks whether there

exists an sm instance of size n such that M ⊆ S, where S is the set of

stable matchings in I. Kalyanaraman and Umans proved that rational-

izability is NP-complete.

Given the NP-completeness of rationalizability, Kalyanaraman and

Umans defined two related optimisation problems along the lines of trying

to find an sm instance that rationalizes the given set of matchings “as much

as possible”. The first of these problems, max stable matchings, takes

as an instance a set of matchings M involving n men and n women, and a

solution is an sm instance of size n such that |M∩S| is maximised, where S
is the set of stable matchings in I. The NP-hardness of this problem follows

by the NP-completeness of rationalizability. The authors showed that

max stable matchings is not approximable within δ, for some δ > 1,

unless P=NP.

The other optimisation problem related to rationalizability that the au-

thors defined concerns maximising the number of pairs in M that are not

blocking in I, taken over all matchings in M. However this problem needs

to be defined carefully. Let U = {m1, . . . ,mn} and W = {w1, . . . , wn} be

the sets of men and women respectively who are assigned in the match-

ings in M. Define a man–woman pair (mi, wj) ∈ U × W to be active if

(mi, wj) ∈ M for some M ∈ M, and inactive otherwise. An sm instance

I of size n is said to be valid if, whenever (mi, wj) is an active pair and

(mi, wk) is an inactive pair, mi prefers wj to wk, and similarly, whenever

(mi, wk) is an active pair and (mj , wk) is an inactive pair, wk prefers mi to

mj . Intuitively, if M can be rationalized by some sm instance, then it can

be rationalized by some valid sm instance.

Given these definitions, Kalyanaraman and Umans defined max sta-

bility to be the problem of finding, given a set of matchings M involving

the set U = {m1, . . . ,mn} of men and the set W = {w1, . . . , wn} of women,

a valid sm instance of size n that maximises
∣

∣

∣

∣

{

(mi, wj ,M) :
M ∈ M∧ (mi, wj) ∈ U ×W is an

active pair and does not block M in I

}∣

∣

∣

∣

.

Again, the NP-hardness of this problem follows by the NP-completeness

of rationalizability. The authors show that max stability is approx-

imable within 4/3, though not approximable within δ, for some δ > 1,

unless P=NP.
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One intriguing problem that the authors leave open is whether ratio-

nalizability remains NP-complete even if |M| is a constant. It is also of

interest to extend the study of rationalizability to the sr context.

2.10.4 The Dinitz conjecture and stable marriage theory

The famous Dinitz conjecture (see Ref. [194]) asserted that L(Kn,n), the

line graph of the complete bipartite graph with n vertices on each side

(n ≥ 1), is n-choosable. A graph G = (V,E) is k-choosable for some integer

k ≥ 1 if, given any function f that assigns a set of integers (or “colours”)

of size k to each vertex of G, there exists a colouring c : V −→ {1, 2, . . . , k}
such that c(v) ∈ f(v) for each v ∈ V , and c(v) 6= c(w) for each {v, w} ∈ E.

The Dinitz conjecture is equivalent to the assertion that χ′
l(Kn,n) = n, i.e.,

the list chromatic index of Kn,n is equal to n, where the list chromatic

index of a graph G is the minimum k such that L(G) is k-choosable.

The Dinitz conjecture was proved by Galvin [239] using a beautiful

connection with the theory of stable marriage12. Rather than describing

Galvin’s proof in its entirety, the purpose of this section is to indicate where

the connection with stable matchings arises. We firstly require to establish

some further terminology.

A directed graph D = (V,A) can be viewed as an orientation of the

edges in the underlying undirected graph G = (V,E), where E = {{u,w} :

(u,w) ∈ A}. Given an arc (u, v) ∈ A, we say that v is a successor of u.

A set S ⊆ V is said to be absorbant if each vertex in V \S has a successor

in S. Also S is independent if no two members of S are adjacent in D. A

kernel of D is a set S ⊆ V that is both absorbant and independent.

A clique in D is a subset S ⊆ V such that, for every pair of vertices

u, v ∈ S, either (u, v) ∈ A or (v, u) ∈ A. If a clique S has a kernel, then

it comprises a single node v that is a sink of S (i.e., v is a successor of

every vertex in S\{v}. If every clique in D has a kernel, then D is said be

normal, and D is a normal orientation of G. If every normal orientation of

G has a kernel, then G is said to be solvable.

In order to prove that G = L(Kn,n) is n-choosable, Galvin con-

structed a normal orientation D of G, and required to prove that every

induced subdigraph of D has a kernel13. However it is enough to show

12Galvin’s proof was selected as an example of a “book proof” by the authors of Ref.
[34].
13The fact that it follows from this that G in n-choosable is established by Corollary 2.2
in Ref. [239].
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Fig. 2.9 The line graph of K3,3 with a normal orientation.

that G is solvable, since any induced subgraph of a solvable graph is

also solvable.

Maffray [411] proved the the line graphG (of a multigraphH) is solvable

if and only if G is perfect. Note that if H is a bipartite multigraph then

H is perfect, and so is G = L(H). Hence G is solvable in this case. This

result can be applied to the special case that H is Kn,n. However Maffray’s

proof that G = L(Kn,n) is solvable can also be established using the theory

of stable marriage.

Let D be an arbitrary normal orientation of G = L(H), where H is

Kn,n. We show that D gives rise to an sm instance I of size n. For, let

U = {m1, . . . ,mn} and W = {w1, . . . , wn} denote the sets of vertices on

each side of H . Each man mi ∈ U corresponds to a clique Cmi
in G: this

comprises the set of edges that are incident to mi in H . Similarly each

woman wj ∈ W corresponds to a clique Cwj
in G. Conversely each clique

in G is either a Cmi
for some mi ∈ U or a Cwj

for some wj ∈ W .

Given mi ∈ U , we form mi’s preference list in I as follows. Cmi
is a

clique in G whose kernel is a sink vertex er = {mi, wj}; wj is mi’s first

choice. Similarly Cmi
\{er} is a clique in G having a sink es = {mi, wk} as

its kernel; wk is mi’s second choice. Continuing in this way, we deduce the

preference list of mi; we do likewise for each other man and woman.

Gale and Shapley [235] showed that I admits a stable matching M .

We claim that M is a kernel of G. For, clearly the elements of M are
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independent as vertices in G. Now suppose that er = {mi, wj} /∈ M . Then

by the stability of M , either (i) mi prefers M(mi) = wk to wj , or (ii)

wj prefers M(wj) = ml to mi. In case (i), es = {mi, wk} is a successor

of er in M , whilst in case (ii), et = {ml, wj} is a successor of er in M .

It follows that G is solvable, and hence Galvin’s proof is complete. The

connection between stable matchings in sm and kernels in line graphs of

bipartite graphs was first made by Maffray [411], and it was his observation

that provided some of the inspiration for Galvin’s subsequent proof of the

Dinitz conjecture.

Indeed, given any sm instance, there is a corresponding line graph of a

bipartite graph with a normal orientation. For, suppose I is an sm instance

of size n. Let H = (U,W,E) be the underlying bipartite graph (that is, H

is isomorphic to Kn,n), and let G = L(H).

Form a digraph D from G by orienting the edges in G as follows: if

{ei, ej} ∈ V (G), then either (i) ei = {mp, wq} and ej = {mp, wr} for some

mp ∈ U and wq, wr ∈ W , or (ii) ei = {mp, wr} and ej = {mq, wr} for some

mp,mq ∈ U and wr ∈ W . In case (i), without loss of generality suppose

that mp prefers wq to wr; orient {ei, ej} as (ej , ei) in D. Do likewise for case

(ii). Then D is a normal orientation of G, since every clique S in D satisfies

either (i) S ⊆ Cmi
for some mi ∈ U , or (ii) S ⊆ Cwj

for some wj ∈ W . In

case (i), S has a sink vertex ep = {mi, wj}, where wj is the most-preferred

woman according to mi’s preferences among the women incident to an edge

in S. The argument for case (ii) is similar.

To illustrate the various connections described in this subsection, a

normal orientation of the line graph corresponding to the sm instance

shown in Fig. 2.3 is indicated in Fig. 2.9. In that instance, ek =

{m⌈k/3⌉, w((k−1) mod 3)+1}. Also, for each mi ∈ U , Cmi
comprises vertices

{e3(i−1)+k : 1 ≤ k ≤ 3}, whilst for each wj ∈ W , Cwj
comprises vertices

{e3k+j : 0 ≤ k ≤ 2}. Each man and woman is indicated within the group

of three vertices that forms his/her corresponding clique. In order to assist

with visualising Cm2
and Cm3

, the edges joining vertices in these cliques

are shown with dashed and dotted lines respectively. The stable matching

Me = {e3, e4, e8} is a kernel in G.

2.10.5 The marriage graph

Ratier [489] defined the marriage graph (strictly speaking a digraph) DI =

(V,E) for an smi instance I, where U is the set of men and W is the set of

women, as follows:
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Fig. 2.10 The marriage graph for the sm instance of Fig. 2.3.

(1) There is a vertex sm,w ∈ V for each acceptable pair (m,w) in I;

(2) There is an edge (sm,w, sm′,w′) ∈ E if and only if either

• m′ = m and m prefers w′ to w, or

• w′ = w and w prefers m′ to m.

Recall from Sec. 2.10.4 that I has a corresponding digraph D′
I , which is

a normal orientation of the line graph of the underlying bipartite graph

of I. Clearly DI is isomorphic to D′
I . Henceforth, we will assume that

DI contains only arcs corresponding to the transitive reductions of the

preference orders belonging to the men and women in I.

The marriage graph for the sm instance of Fig. 2.3 is shown in Fig. 2.10.

In the latter figure, the vertex in the ith row and jth column corresponds

to the acceptable pair (mi, wj).

Following on from the observations of Maffray [411] as described in

the previous subsection, Ratier [489] noted that a matching M is stable

in I if and only if its corresponding vertices in DI form a kernel. Ratier

defined two marriage graphs to be equivalent if they admit the same set of

stable matchings (i.e., they have the same kernels). He showed that DI is

equivalent to a marriage graph in which certain vertices, corresponding to

pairs that cannot belong to a stable matching in I, are deleted. It turns

out that these vertices correspond to precisely those acceptable pairs in I

that do not belong to the GS-lists in I (i.e., they are deleted during an

execution of either the MEGS or WEGS algorithms). Ratier’s observation

is thus immediate by Theorem 1.2.5 of [261].

Ratier noted that, following these deletions, DI is a principal marriage

graph, i.e., it can be decomposed into principal circuits (see Ref. [489] for

further details). Ratier went on to characterise the polytope of solutions to
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the LP for smi [576, 520] (see Sec. 2.4) in terms of the principal marriage

graph.

Two further papers by Balinski and Ratier [62,63] also explore the mar-

riage graph and use it to reprove a range of existing results concerning the

theory of stable matchings in smi. Bäıou and Balinski extended the mar-

riage graph to the case of hr in Refs. [58] (see Sec. 2.4 for more details)

and [60], and to the case of the many–many stable marriage problem in

Ref. [57] (see Sec. 5.4 for more details).

2.10.6 Sampling and counting

Bhatnagar et al. [73] and Chebolu et al. [133,134] considered the problems

of sampling and counting stable matchings in various restricted models of

sm and sr. It turns out that, in general, these are all hard problems. We

begin with problems involving sampling stable matchings. Here, results

have been obtained with respect to several restricted models of sm. We

begin by defining these models; the definitions have natural extensions to

the sr context.

In the k-attribute model (k ≥ 1), each agent has k scores, each accord-

ing to k different attributes (e.g., attractiveness, intelligence, wealth, etc.)

and can therefore be associated with a point in R
k. Each man mi has a

linear function of these attributes (representing his opinion of the relative

importance of these characteristics) which essentially projects the women’s

points onto a line — this gives rise to mi’s preference list. The preference

list for each woman wj is arrived at in a similar way.

In the k-range model (k ≥ 1), the preference lists satisfy the property

that, for each agent ai, there is some j such that ai appears between po-

sitions j, j + 1, . . . , j + k − 1 on the preference list of each member of the

opposite sex. This could correspond to the case that the preference lists

of the men and women conform, to within a measure of closeness given by

k, to master lists of the women and men respectively. Such master lists

can occur on both sides in practical applications: consider for example hr

instances, where common academic examinations give rise to a master list

of residents, whilst a national league table gives rise to a master list of

hospitals. For k = 1, all preference lists are identical and there is a unique

stable matching.

In the k-list model (k ≥ 1), the men and women are each partitioned

into k sets, and all members of the same set have an identical preference list.

This model reflects the possibility that the agents may be partitioned into
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groupings which characterise their rankings of the members of the opposite

sex.

In the k-Euclidean model (k ≥ 1), each agent is represented by two

points in R
k, a preference point and a position point . Denote these points

by m̂i and m̄i for each man mi, and by ŵj and w̄j for each woman wj ,

respectively. Then mi prefers wj to wk if and only if d(m̂i, w̄j) < d(m̂i, w̄k),

where d(x, y) represents the Euclidean distance between two points x, y ∈
R

k. A similar condition for preference holds in the case of the women.

Bogomolnaia and Laslier [103] gave an example of an sm instance of size

n that cannot be represented using the k-attribute model for k ≤ n − 2.

Bhatnagar et al. [73] strengthened this by showing that there exists a lattice

of stable matchings involving n men and n women that is not the lattice

of stable matchings for any sm instance that conforms to the k-attribute

model, for any k < n/2. They also showed that there are sm instances

conforming to the k-attribute model (k ≥ 2) or the k-range model (k ≥ 2)

that admit an exponential number of stable matchings.

Bhatnagar et al. [73] studied the problem of sampling a stable matching

uniformly at random. To this end, they defined a Markov Chain based

on a simple random walk on the lattice of stable matchings for a given

sm instance conforming to one of the above models. The mixing time of

this Markov Chain corresponds to the time that the random walk takes to

converge to an equilibrium. The authors showed that there are sm instances

I belonging to the k-attribute model (k ≥ 2) for which the mixing time is

exponential (in the size of I). An analogous result holds for the k-range

model (k ≥ 5) and the k-list model (k ≥ 4). However the mixing time is

polynomial for the k-range model when k = 2.

Gelain et al. [246] presented a local search approach to sampling the

stable marriage lattice.

We now turn to the problem of counting the number of stable match-

ings, given an instance of sm, which we refer to as #sm. It is known that

#sm is #P-complete [319]. Thus, it is of interest as to whether a Fully

Polynomial Randomised Approximation Scheme (FPRAS) [358, 359] exists

for this problem.

Dyer et al. [180] defined a complexity class #RHΠ1 of counting prob-

lems, and identified a subclass of problems in this class that are com-

plete with respect to approximation-preserving (AP) reductions (henceforth

problems in this subclass are referred to as being #RHΠ1-complete). The

#RHΠ1-complete problems are equivalent to one another in the sense that

if one of these problems admits an FPRAS, then they all do. At present it is



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

2.10. Further results 119

not known whether an FPRAS exists for any of the #RHΠ1-complete prob-

lems, however it is felt to be unlikely [180]. One of the #RHΠ1-complete

problems is that of counting the number of closed subsets of a given poset

P = (P,◭) [180]. Given that Irving and Leather [319] proved that there is

a corresponding sm instance I, which can be constructed from P in poly-

nomial time, such that the subsets of P that are closed under ◭ are in 1–1

correspondence with the stable matchings in I, it follows that #sm is also

#RHΠ1-complete.

Chebolu et al. [133] showed that #sm is #RHΠ1-complete even for

instances that belong to the k-attribute model for k ≥ 3. They also showed

that the same is true for the k-Euclidean model (k ≥ 2). On the other hand,

for the 1-attribute model, the authors gave a polynomial-time algorithm

for #sm.

In more recent work, Chebolu et al. [134] extended their study to sr.

We denote by #sr the problem of counting the number of stable match-

ings, given an sr instance. The authors showed that #sr is complete for

#P under AP-reductions, even for instances conforming to the k-attribute

model (k ≥ 4) or the k-Euclidean model (k ≥ 3). This means that there is

no FPRAS for either restriction of #sr unless NP=RP. Additionally, the

authors showed that each of #sr under the 3-attribute model, and #sr

under the 2-Euclidean model, is #RHΠ1-complete. Finally, for #sr un-

der the 1-attribute model, Chebolu et al. showed that #sr is solvable in

polynomial time (in fact the number of stable matchings is either 1 or 2 in

this case).

2.10.7 Online algorithms

Khuller et al. [378] considered online algorithms for sm. In their model, it is

assumed that the set of n women and their preference lists over the n men

are known in advance. The men arrive one by one, and when a man mi

arrives, his preference list is revealed. At this point, mi is to be assigned to

some woman wj , in such a way that no other assigned woman changes her

partner. The authors measure the “competitiveness” of an online algorithm

A that conforms to this model by measuring the number of blocking pairs

of a matching M output by A in the final sm instance I whose definition

becomes complete when the last man arrives.

Note that the authors do not consider the notion of a competitive ratio

for A (which is the ratio of the performance of A to the performance of an

optimal offline algorithm) since the “performance” measure of the optimal
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offline algorithm (namely the Gale–Shapley algorithm) is 0 for this problem.

Similarly, it would not lead to an interesting problem if the authors were

to have allowed a previously matched woman to change her partner during

the execution of A — in this case it is clear that A will always produce a

stable matching (since the arriving man mi will trigger a proposal–rejection

sequence that transforms a stable matching in the smi instance immediately

prior to mi’s arrival into an updated matching that is stable in the smi

instance immediately after mi’s arrival).

Khuller et al. proved that if A is the “obvious” online algorithm (i.e.,

assign the arriving man to the most-preferred single woman on his prefer-

ence list) then A produces a matching M with O(n log n) blocking pairs

in the average case. They also showed that no randomised algorithm can

produce a matching with fewer than Ω(n2) blocking pairs in the worst

case.

See also Ref. [404] for further work regarding online algorithms for sm.

2.10.8 Unified approach to finding “good” stable matchings

Cheng et al. [148] developed a unified approach to solving variants of sm

and hr that involve finding stable matchings that satisfy some additional

criteria. Specifically, these additional criteria are separated into two distinct

forms: (i) where there is a set of constraints, and a solution is a stable

matching that satisfies each of these; and (ii) where a cost function is defined

over the set of stable matchings, and a solution is a stable matching that

is optimal with respect to this function. We refer to a solution as a feasible

stable matching or an optimal stable matching depending on whether the

additional criteria fall into category (i) or (ii), respectively. We remark that

a feasible stable matching need not exist.

An example set of constraints for category (i) could be the condition

that no two men can swap their partners so as to both improve (this is the

notion of man-exchange-stability — see Sec. 5.7). For category (ii), cost

functions can be defined in order that an optimal solution is an egalitarian

or minimum regret stable matching, for example.

The authors’ treatment is in fact generalised to the hr setting rather

than the more restricted smi context, because practical applications of bi-

partite matching problems with two-sided preferences most commonly cor-

respond to the many–one setting, and moreover in the authors’ experience,

hr gives rise to a richer variety of feasibility constraints and cost functions

that can be defined.
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The approach that Cheng et al. adopted that enables these feasible or

optimal stable matchings to be found efficiently (assuming such a matching

exists) is based on navigating through the lattice of stable matchings in an

hr instance with the aid of the meta-rotation poset . Bansal et al. [67] de-

fined the concept of ameta-rotation in the context of the many–many stable

marriage problem (see Sec. 5.4). A meta-rotation is a natural generalisa-

tion of the notion of a rotation from the 1–1 smi setting (see Sec. 1.3.4.3).

Cheng et al. [148] then specialised Bansal et al.’s definition to a given hr

instance I. The traversal of the lattice of stable matchings in I is then

facilitated by a fundamental result of Bansal et al. [67], namely that the

closed subsets of the meta-rotation poset are in 1–1 correspondence with

the stable matchings in I.

Let I be an hr instance where R is the set of residents and H is the

set of hospitals, and suppose that we seek a feasible stable matching in I

relative to a set X of constraints (i.e., corresponding to category (i) above).

Cheng et al. gave an algorithm that will find such a matching or report

that none exists, so long as each constraint X ∈ X satisfies the so-called

identification property. A constraint X satisfies this property if, whenever

M is a stable matching in I that does not satisfy X , where M is not the

hospital-optimal stable matching, there exists a resident r∗ such that, for

each stable matching M ′ where M � M ′ (� is the dominance partial order

defined in Definition 1.12) and M(r∗) = M ′(r∗), M ′ does not satisfy X

either. Such a resident r∗ is called a candidate resident . The running time

of the algorithm is O(n1n2f(X )), where n1 = |R| and n2 = |H |, and f(X )

is the worst-case time taken to check whether each constraint X ∈ X is

satisfied, or else identify a candidate resident with respect to X and the

current matching.

Now suppose that we seek a stable matching in I that is optimal with

respect to a given cost function (i.e., corresponding to category (ii) above).

Cheng et al. assumed that there is a cost function s : (R ∪H)×S −→ R
+
0 ,

where S is the set of stable matchings in I, and the larger the value of s with

respect to an agent ai ∈ R ∪ H and a matching M ∈ S, the happier ai is

with M . The authors considered functions s that satisfy the independence

property: that is, for all ai ∈ R ∪H , s(ai,M) is a function of M(ai) only.

They define a generalised minimum regret stable matching to be a matching

M ∈ S such that

r′(M) = min
ai∈R∪H

s(ai,M)
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is maximum, and a generalised egalitarian stable matching to be a matching

M ∈ S such that

c′(M) =
∑

ai∈R∪H

s(ai,M)

is maximum. Cheng et al. gave algorithms for computing generalised min-

imum regret and generalised egalitarian stable matchings with respect to

cost functions satisfying the independence property. These algorithms have

time complexity O(n1n2f(r
′)) and O(n1n2f(c

′)+n4
1), where f(r

′) and f(c′)

are the worst-case time taken to evaluate r′ and c′ respectively.

2.10.9 Locally stable matchings

Arcaute and Vassilvitskii [49] introduced the notion of a locally stable

matching in instances of hr that are augmented with a social network

graph. Formally, let I be an instance of hr and let G = (R,E) be an undi-

rected graph, where R is the set of residents in I. Intuitively {ri, rj} ∈ E if

and only if ri and rj know one another. When instance I is equipped with

G, we have an instance of hr+sn.

Given a matching M in an instance 〈I,G〉 of hr+sn (where I is the

underlying hr instance and G = (R,E) is the social network graph), a

blocking pair of M is a resident–hospital pair (ri, hj) such that (i) (ri, hj)

is a blocking pair of M in I, and (ii) there exists some rk ∈ M(hj) such

that {ri, rk} ∈ E. Intuitively, in order to be a blocking pair in an hr+sn

instance, (ri, hj) is a blocking pair in the classical sense such that ri knows

someone in M(hj). The motivation is that, in reality, often an employer’s

awareness of the merits of an applicant depends on the recommendation of

an existing employee. M is locally stable if M admits no blocking pair with

respect to this revised definition.

Clearly if M is stable in I then M is locally stable in 〈I,G〉. Hence the

set of locally stable matchings in 〈I,G〉 is a superset of the set of stable

matchings in I. In fact it is possible for the former set to be much larger

than the latter [49].

Arcaute and Vassilvitskii proved that locally stable matchings do not

form a lattice structure in general. They also considered a dynamic ver-

sion of the problem, giving a decentralised algorithm, which they referred

to as the “local Gale-Shapley algorithm”, that, given an initial matching,

converges almost surely to a locally stable matching.

Hoefer [279] studied locally stable matchings in instances of smi and

sri augmented with a social network graph (it is straightforward to extend
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the definition of a locally stable matching to the sri case). He extended

Arcaute and Vassilvitskii’s study of decentralised algorithms by considering

best response and better-response dynamics (see Sec. 2.6.4).

Cheng and McDermid [147] considered the hr+sn case and showed that

locally stable matchings can have different sizes in a given problem instance

〈I,G〉, though a maximum locally stable matching is at most twice the size

of a stable matching. This gives rise to the problem max hr+sn: given

an instance of hr+sn, the objective is to find a maximum locally stable

matching.

Cheng and McDermid considered some special cases of G (such as the

cases when G is empty, or has a constant number of edges, or is the com-

plete graph) for which max hr+sn is solvable in polynomial time. On

the other hand, in general, they showed that max hr+sn is NP-hard and

not approximable within 21
19 − δ, for any δ > 0, unless P=NP. The result

holds even if each hospital has capacity 1. For a particular class of so-

cial network graphs, the authors showed that max hr+sn is approximable

within 3
2 , using corresponding results for max hrt (see Sec. 3.2.6). See also

Ref. [280].

2.10.10 Miscellaneous results

In this section we present a number of additional results for sm that

have not already been covered in previous sections, but are still worthy

of noting.

Lower bounds for stable matching. The ground-breaking paper of

Ng and Hirschberg [464] established lower bounds of Ω(n2) for each of

the problems of determining whether a given man–woman pair is sta-

ble and finding a stable matching, given an sm instance of size n. Al-

though the year of publication of Ng and Hirschberg’s paper was 1990,

these results were described in Ref. [261, Sec. 1.5]. Dias et al. [168] showed

that listing all stable matchings requires Ω(n) amortised time per solution.

Dougherty and Selkow [170] also gave lower bounds for the certificate com-

plexity of various problems related to finding stable matchings in sm (see

Sec. 2.2.9).

Rank profiles of stable matchings. Let n ≥ 2 be an integer. Boros

et al. [107] defined a rank profile to be a pair of n-tuples 〈p, q〉, where

p = 〈x1, . . . , xn〉, q = 〈y1, . . . , yn〉 and 1 ≤ xi, yj ≤ n (1 ≤ i, j ≤ n).

Further, they defined 〈p, q〉 to be stable if there is an instance I of sm
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of size n and a stable matching M in I such that xi = rank(mi,M(mi)

(1 ≤ i ≤ n) and yj = rank(wj ,M(wj)〉 (1 ≤ j ≤ n). For example, the

rank profile 〈〈2, 2〉, 〈2, 2〉〉 is not stable. Among other results, they gave a

characterisation of stable rank-profiles, leading to an O(n5) algorithm to

determine if a given rank-profile 〈p, q〉 is stable. If 〈p, q〉 is stable then the

algorithm constructs an sm instance I of size n such that the matching that

is uniquely determined by I and 〈p, q〉 is stable.

Genetic algorithms for stable matching. Aldershof and Carducci [38]

described two genetic algorithms for finding stable matchings: one is for the

classical smi case, and the other is for the smi variant where couples can

submit joint preference lists (see Sec. 5.3). In each case, a set of inequalities

is given — these constraints are based on the LP inequalities for sm and smi

due to Vande Vate and Rothblum [576,520]. Chromosomes are generated in

order to satisfy a subset of these inequalities (these correspond to feasible

matchings). The remaining inequalities correspond to blocking pairs, and

the fitness function is the number of these constraints that are satisfied.

This is useful in the case of smi with couples, because a stable matching need

not exist, and therefore a solution will be a matching with the minimum

number of blocking pairs. As mentioned in Sec. 2.2.7, genetic and ant

colony-based algorithms for finding a sex-equal stable matching, given an

smi instance, have also been formulated [459,582]. Refs. [581,381,159,405]

also discuss genetic algorithms for sm.

Private stable matching. Golle [256] argued that in many practical sce-

narios, the preference list of an agent might contain sensitive information,

which should not be shared with other participants in a given matching

scheme. Algorithms for finding stable matchings typically take as input

the entire set of preferences of all agents. In mitigation of the need for an

agent to reveal their preferences to all other participants, these lists are of-

ten passed to a trusted third party that is responsible for administering the

matching scheme, but that third party is then vulnerable to corruption as

a consequence of pressure from more powerful participants. Golle proposed

an alternative stable matching algorithm for sm that aims to maintain the

privacy of each agent’s preference list throughout the matching process.

See also Refs. [532, 530, 222, 69, 531].

α-stability and k-stability. Arkin et al. [50] defined the notions of an α-

stable matching (α ≥ 1) and a k-stable matching, each of which generalises

the concept of a (classical) stable matching. In fact, Arkin et al. defined
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these terms in the sri setting. Nevertheless, given the clear applicability of

these concepts to smi, we describe them in this chapter.

Let I be an instance of sri. Relative to α-stability, a blocking pair

of a given matching M in I is an acceptable pair of agents {ai, aj} such

that either ai is unmatched in M or rank(ai,M(a(i))/rank(ai, aj) > α,

and similarly for aj . Thus, in order to be in a blocking pair, each agent

must either be unmatched or improve their rank by a factor more than α.

Clearly an α-stable matching is α′-stable, for any α′ > α.

Clearly classical stability corresponds to α-stability where α = 1. The

authors show that, for a fixed α > 1, finding an α-stable matching is at

least as hard as finding a classical stable matching. They also consider

α-stability in the context of 3D variants of sr (see Sec. 5.6). We note that

α-stability was also considered by Anshelevich et al. [46] and by Emek et

al. [191] (albeit in a slightly different form in the latter case).

Arkin et al. [50] also remarked that it is possible to define an additive

counterpart of α-stability, which we will refer to as k-stability. A matching

M is k-stable if there is no acceptable pair of agents {ai, aj} in I such that

either ai is unmatched in M or rank(ai,M(a(i)) − rank(ai, aj) ≥ k, and

similarly for aj . That is, in order to be in a blocking pair, each agent must

either be unmatched or improve their partner by at least k places in their

preference list. Clearly a k-stable matching is k′-stable, for any k′ > k.

Again, classical stability corresponds to k-stability where k = 1. Pini et al.

[477,479,480] also considered the analogue of k-stability (unfortunately they

referred to this concept as α-stability) in the context of smi with weighted

preferences (see Sec. 1.3.4.1).

2.11 Conclusions and open problems

Although sm and its variants have been the focus of much attention in

the literature since the publication of Gusfield and Irving’s book in 1989,

a number of intriguing problems remain open. From among the list of 12

research problems posed by Gusfield and Irving in the appendix of their

book that relate to sm and its variants, perhaps the most noteworthy

of those that remain open are Problems 1 and 3: these concern charac-

terising sm instances that admit the maximum number of stable match-

ings, and determining whether sm belongs to NC (see Secs. 2.2.2 and 2.2.4

respectively).

Although Problem 2 has been solved (this concerns the structure of the

divorce digraph, and determining whether an arbitrary matching can always



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

126 The Stable Marriage problem: An update

be transformed into a stable matching via a sequence of divorce operations),

one intriguing problem remains open, as noted in Sec. 2.2.3. This relates

to establishing the algorithmic complexity of the decision problem which

asks, given an sm instance I and a matching M0, whether there is a path

from vM0
to a sink vertex in the divorce digraph DI (that is, whether

an arbitrary stable matching can be obtained from M0 by a sequence of

exclusively divorce operations).

As noted in Sec. 2.3.1, Subramanian [551] gave a logspace reduction from

an smi instance I to an instance J of the Assignment problem that enables

the man-optimal stable matching in I to be constructed from an optimal

solution in J . It remains open as to whether there is a polynomial-time

reduction from I to an instance J of the Assignment problem that gives

a correspondence between all the stable matchings in I and the optimal

solutions in J .

Determining which stable matchings can be reached, by starting from

a given matching (which may be empty) and iteratively satisfying blocking

pairs, was discussed in Sec. 2.6. As noted there, the complexity of the

following decision problems remains open:

(1) given an sm instance I and a stable matching M , is there an execution

of Algorithm ROM that terminates with M?

(2) given an sm instance I, a matching M0 and a stable matching M , is

there an execution of Algorithm RVV that transforms M0 to M?

The study of each of the problems of finding a balanced stable matching

and rationalizing matchings (see Secs. 2.10.2 and 2.10.3 respectively) is at a

relatively early stage, and there is scope for progress to be made, despite the

NP-hardness of both problems in general. For example, special cases of each

problem might be more accessible, such as restrictions where preference lists

are of bounded length and/or master lists are in place involving either the

men or the women.

It is also of interest to determine the complexity of problems relat-

ing to finding α-stable and k-stable matchings in instances of smi (see

Sec. 2.10.10).
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Chapter 3

The Stable Marriage and Hospitals /
Residents problems with indifference

3.1 Introduction

In Sec. 1.3.5, we motivated the study of variants of hr that involve forms of

indifference, and we defined hrt, the Hospitals / Residents problem with

Ties. We also defined three stability criteria, namely weak stability, strong

stability and super-stability, that are appropriate in this setting. Following

the first paper to define these criteria in smt [308], the study of smti and

hrt under these forms of stability has been a very active area of research

from 1999 to date, triggered by Refs. [414, 332].

Among the three stability criteria mentioned in the preceding para-

graph, it is weak stability that has received by far the most attention in

the literature (Refs. [419,267,271,272,340,322,323,344,385] represent just

some of the papers published on this topic). It is likely that one of the

main reasons for this is the guaranteed existence of a weakly stable match-

ing, given an instance of hrt, as we will show in Sec. 3.2. By contrast, as

revealed in Secs. 3.3 and 3.4, the same is not true in general in the cases of

strong stability and super-stability, respectively.

One of the most exciting areas of research in this context has been the

search for approximation algorithms for finding large weakly stable match-

ings in the context of smti (it turns out that, for such a problem instance,

weakly stable matchings can have different sizes, and the problem of finding

the largest is NP-hard) [333]. After the initial straightforward upper bound

of 2 was established [419], a series of papers derived successively smaller

upper bounds for the general smti case [336, 341, 340, 385], culminating in

the current best bound of 3
2 [437,386,472]. It is likely that we have not yet

heard the last word on this.

127
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This chapter is organised as follows. Sections 3.2, 3.3, 3.4 detail struc-

tural and algorithmic results for hrt under each of the weak, strong and

super-stability criteria respectively. In the majority of practical applica-

tions, indifference takes the form of ties in the preference lists, hence this

chapter mainly focuses on hrt. However in Sec. 3.5 we describe some re-

lated stable matching problems involving indifference, including hrp in its

full generality in Sec. 3.5.3. Finally Sec. 3.6 contains some conclusions and

open problems.

3.2 Weak stability

In this section we focus on the weakest of the three stability criteria. In

Sec. 3.2.1 we show that every instance of hrt admits a weakly stable match-

ing, and we give a simple linear-time algorithm for finding one. Despite the

guaranteed existence of a weakly stable matching, it turns out that many

structural properties enjoyed by stable matchings in instances of sm or hr

are absent in the case of weakly stable matchings in smti instances. Sec-

tions 3.2.2 and 3.2.3 indicate some properties that no longer hold for weakly

stable matchings. In particular, a fundamental observation is that, in con-

trast to the case for smi, weakly stable matchings need not be of the same

size, for a given instance of smti.

This leads to the question of whether there exist efficient algorithms

for the problem of finding a maximum cardinality weakly stable matching

(henceforth a maximum weakly stable matching) in instances of smti and

hrt, denoted by max smti and max hrt respectively. In Sec. 3.2.4, we

show that max smti is NP-hard. We briefly survey parameterized com-

plexity results for this problem in Sec. 3.2.5. Section 3.2.6 deals with the

approximability of max smti and max hrt. We give an overview of pre-

vious results in the literature, focusing on one particular approximation

algorithm due to Király [385]. We also describe two heuristics for max

hrt whose implementations have been compared empirically with that of

Király’s algorithm. We then give a lower bound for the approximability of

max hrt, and we further show how instances of hrt can be “cloned” to

form instances of smti, in many cases enabling approximation algorithms

for the latter to be applied to instances of the former without affecting the

performance guarantee.

Finally, in Sec. 3.2.7, we discuss some other problems involving weak

stability in instances of smti and hrt.
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3.2.1 Existence of a weakly stable matching

The following result, first proved in Ref. [418], gives a necessary and suffi-

cient condition for a matching to be weakly stable in an instance of hrt.

Before stating the result, we make the following definitions. Given an in-

stance I of hrt and a matching M in I, let RM (I) denote the set of hr

instances formed by breaking the ties in I in some way, subject to the re-

quirement that if t is a tie on a resident ri’s list containing M(ri), then t

must be broken so that ri prefers M(ri) to each member of t\M(ri). Simi-

larly let HM (I) denote the set of hr instances formed by breaking the ties

in I in some way, subject to the requirement that if t is a tie on a hospital

hj ’s list containing some member of M(hj), then t must be broken so that

hj prefers each member of t ∩M(hj) to each member of t\M(hj).

Lemma 3.1 ([418]). Let I be an instance of hrt, and let M be a match-

ing in I. Then M is weakly stable in I if and only if M is stable in some

instance I ′ of hr obtained by breaking the ties in I.

Proof. Let R = {r1, . . . , rn} be the residents in I, and let H =

{h1, . . . , hm} be the hospitals in I. Suppose M is a weakly stable matching

in I. Let I ′ be any member of RM (I)∩HM (I). (Then I ′ is an hr instance

obtained by breaking the ties in I.) Suppose that (ri, hj) blocks M in I ′.

Then in I ′, either ri is unassigned or prefers hj to M(ri), and either hj is

undersubscribed or prefers ri to at least one member of M(hj). But the

same is also true in I, in view of the way that ties were broken to form I ′.

Hence (ri, hj) blocks M in I, a contradiction.

Conversely suppose that M is stable in some hr instance I ′ obtained

by breaking the ties in I. It is then straightforward to verify that if (ri, hj)

blocks M in I, then the same pair blocks M in I ′, a contradiction. �

Lemma 3.1 and Theorem 1.9 therefore indicate that a weakly stable match-

ing in an hrt instance I can be found by breaking the ties arbitrarily in

I to obtain an hr instance I ′, and then applying the RGS algorithm. We

thus obtain:

Theorem 3.2 ([418,419]). Every instance I of hrt admits a weakly sta-

ble matching, and such a matching can be found in O(m) time, where m is

the number of acceptable resident–hospital pairs in I.
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Men’s preferences Women’s preferences
m1 : w1 w2 w1 : (m1 m2)
m2 : w1 w2 w2 : m1 m2

Fig. 3.1 An instance of smt with no man-optimal weakly stable matching

3.2.2 Absence of a lattice structure

As mentioned in Sec. 1.3.3, the set of stable matchings for a given instance

of sm forms a distributive lattice. However, in the case of weak stability,

this structure is absent (under the “usual” definitions of meet and join as

described in Sec. 1.3.3) even for smt. This was first observed by Roth [498],

who gave an example smt instance of size 3 that admits no man-optimal

weakly stable matching. Figure 3.1 shows an smt instance I of size 2 with

the same property (in a preference list, agents within parentheses are tied).

Here, M1 = {(m1, w1), (m2, w2)} and M2 = {(m1, w2), (m2, w1)} are the

two weakly stable matchings in I. Since man m1 has his first-choice partner

in M1 and his second-choice partner in M2, whereas manm2 has his second-

choice partner in M1 and his first-choice partner in M2, no man-optimal

weakly stable matching in I exists.

The absence of a lattice structure for weakly stable matchings in in-

stances of smt is a strong indicator that other structural results (such as

Theorem 1.11) and efficient algorithms that apply in the case of smi do

not carry over to smt and smti. As we shall see in the forthcoming sub-

sections, given an instance of smti, although a weakly stable matching

always exists and can be computed in linear time, whenever any additional

constraints are placed on the weakly stable matching to be found (such

as requiring a maximum cardinality, minimum regret or egalitarian weakly

stable matching), NP-hardness, and in some cases strong inapproximability

results, prevail.

3.2.3 Sizes of weakly stable matchings

We begin by noting that weakly stable matchings can have different sizes,

given an instance of smti. Figure 3.2 shows an smti instance in which

there are two weakly stable matchings, namely M1 = {(m1, w2), (m2, w1)}
of size 2 and M2 = {(m1, w1)} of size 1. Clearly this instance may be

replicated to yield an arbitrarily large instance of smti having two weakly

stable matchings M and M ′, where |M | = 2|M ′|. (In fact this bound of 2

is the worst possible — see Sec. 3.2.6.1 for further details.)
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Men’s preferences Women’s preferences
m1 : w1 w2 w1 : (m1 m2)
m2 : w1 w2 : m1

Fig. 3.2 An instance of smti with weakly stable matchings of sizes 1 and 2

We now give a structural result that does hold for weakly stable match-

ings in smti, namely the interpolation of weakly stable matchings. That

is, we show that, given an smti instance and weakly stable matchings of

sizes p and r, we may find in polynomial time a weakly stable matching of

size q, for each p < q < r. Our starting point is the following lemma, first

proved in Ref. [418]. Henceforth, we denote by s(I) the size of the stable

matchings in an smi instance I (recall from Theorem 1.11 that all stable

matchings in I have the same size).

Lemma 3.3 ([418]). Let I and I ′ be two instances of smi with the same

set of men and women, such that exactly one agent’s preference list in I

differs in I ′. Then |s(I)− s(I ′)| ≤ 1.

Proof. Let ak be the agent whose preference list in I differs in I ′. Let

M and M ′ be stable matchings in I and I ′ respectively. Let G = M ⊕M ′.

The connected components of G are paths and cycles whose edges alternate

between M and M ′. Suppose that G has a component that is an odd-length

path which does not contain ak — say it is (m1, w1), (w1,m2), . . . , (mr, wr),

where without loss of generality (mi, wi) ∈ M (1 ≤ i ≤ r) and (mi+1, wi) ∈
M ′ (1 ≤ i ≤ r − 1).

Clearly, because of the way in which G was constructed, both m1 and

wr are unassigned in M ′. If w1 prefers m1 to m2 then (m1, w1) blocks M
′,

so w1 prefers m2 to m1. If m2 prefers w1 to w2 then (m2, w1) blocks M .

Similarly, for each i (1 ≤ i ≤ r − 1), wi prefers mi+1 to mi, and mi+1

prefers wi+1 to wi. It follows that (mr, wr) blocks M
′, a contradiction.

Hence G contains at most one alternating path of odd length, and an

easy counting argument establishes the lemma. �

Lemmas 3.3 and 3.1 may be used to demonstrate our interpolation re-

sult, first proved in Ref. [418].

Theorem 3.4 ([418]). Weak stability is an interpolating invariant, i.e.,

if a given instance I of smti has weakly stable matchings of sizes p and r,

and p < q < r, then I also has a weakly stable matching of size q, and such

a matching can be constructed in polynomial time.
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Proof. Let M and M ′ be weakly stable matchings of sizes p and r respec-

tively in I, and let IM and IM ′ be instances of smi obtained by breaking

the ties in I so that M and M ′ are stable in IM and IM ′ respectively (note

that IM and IM ′ exist by Lemma 3.1). Suppose that the preference lists of

t agents in IM differ in IM ′ . Let a1, . . . , at be these agents, and let Pi be

the preference list of ai in IM ′ (1 ≤ i ≤ t).

There exists a sequence IM = I0, I1, I2, . . . , It = IM ′ of instances of smi

such that, for each i (1 ≤ i ≤ t), Ii is obtained from Ii−1 by giving agent ai
the preference list Pi, and by giving every other agent the same preference

list as in Ii−1. Let si = s(Ii) (0 ≤ i ≤ t). Then by Lemma 3.3, successive

entries in the sequence s0, s1, . . . , st differ by at most 1, and hence there is

some i (1 ≤ i ≤ t− 1) such that si = r.

Note that t ≤ 2n (where n is the size of I), and thus a weakly stable

matching in I of size r can be found in O(m log n) time using a binary

search, where m is the number of acceptable man–woman pairs in I. �

We finally remark that Theorem 3.4 carries over to hrt by Theorem

3.11 (see Sec. 3.2.6.5).

3.2.4 NP-hardness of max smti

As described in Sec. 3.2.3, finding a weakly stable matching M in an in-

stance I of smti is equivalent to finding some instance I ′ of smi, obtained

from I by breaking the ties in some way, in which M is stable. However, as

the example in Fig. 3.2 shows, different ways of breaking the ties in I can

give rise to instances of smi that admit stable matchings of different sizes.

In almost all practical situations, a larger stable matching is prefer-

able to a smaller one. Typically, in a centralised matching scheme, an

unassigned resident may well be disappointed, and possibly disillusioned,

at being unassigned, and will have to enter some secondary process that

allocates them to unfilled places, such as the so-called “scramble” that fol-

lows the NRMP match [602]. Hence it is desirable to find some strategy

of breaking the ties that gives rise to stable matchings that are as large

as possible. Unfortunately, as we show in this section, such a strategy is

unlikely to have polynomial-time complexity.

Let com smti denote the problem of deciding whether a given instance

of smti admits a complete weakly stable matching (i.e., a weakly stable

matching in which all men and women are assigned.) We now show that

com smti is NP-complete, as first proved in Ref. [332]. To do this, we
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use a reduction from a problem relating to maximal matchings in graphs.

Recall from Sec. 1.2 the definition of min mm-d. A related decision problem

is exact mm, which asks whether, given a graph G and an integer K, G

admits a maximal matching of size exactly K. It turns out that min mm-d

and exact mm are polynomially equivalent, which yields NP-completeness

for exact mm in bipartite graphs, as we now demonstrate.

Lemma 3.5 ([332,419]). exact mm is NP-complete, even for bipartite

graphs.

Proof. Clearly exact mm belongs to NP. To show NP-hardness, we re-

duce from min mm-d restricted to bipartite graphs, which is NP-complete

by Theorem 1.7. Let G (a bipartite graph) and K (a positive integer) be

an instance of min mm-d. Without loss of generality we may assume that

K ≤ β+(G), where β+(G) denotes the size of a maximum matching of

G. Suppose that G admits a maximal matching M , where |M | = k ≤ K.

If k = K, we are done. Otherwise suppose that k < K. We note that

maximal matchings satisfy the interpolation property [276] (i.e., G has a

maximal matching of size j, for k ≤ j ≤ β+(G)) and hence G has a maximal

matching of size K. The converse is clear. �

Theorem 3.6 ([332,419]). com smti is NP-complete.

Proof. Clearly com smti belongs to NP. To show NP-hardness, we trans-

form from exact mm restricted to bipartite graphs, which is NP-complete

by Lemma 3.5. Hence let G = (U,W,E) (a bipartite graph) and K (a pos-

itive integer) be an instance of exact mm. Let U = {m1,m2, . . . ,ms}
and W = {w1, w2, . . . , wt}. Without loss of generality assume that

K ≤ min{s, t} (for otherwise the exact mm instance trivially has a “no”

answer).

We construct an instance I of com smti as follows: let U ∪X be the set

of men, and let W ∪ Y be the set of women, where X = {x1, x2, . . . , xt−K}
and Y = {y1, y2, . . . , ys−K}. For any mi ∈ U , let Wi ⊆ W denote the

vertices adjacent to mi in G. Similarly for any wj ∈ W , let Uj ⊆ U denote

the vertices adjacent to wj in G. Create preference lists for each agent as

follows:

mi : (Wi) [Y ] (1 ≤ i ≤ s)

xi : [W ] (1 ≤ i ≤ t−K)

wj : (Uj) [X ] (1 ≤ j ≤ t)

yj : [U ] (1 ≤ j ≤ s−K)
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In a given preference list, the symbol (S) denotes a tie containing all mem-

bers of S, and the symbol [S] denotes all members of the set S listed in

strict order, in increasing subscript order, from the point at which the sym-

bol appears. We claim that G has a maximal matching of size K if and

only if I has a complete weakly stable matching.

For, suppose that G has a maximal matching M where |M | = K. We

construct a matching M ′ in I as follows. Initially let M ′ = M . In I, there

remain s−K men in U who are unassigned in M ′, and t−K women in W

who are unassigned in M ′. Denote these men and women respectively by

mp1
,mp2

, . . . ,mps−K
, where p1 < p2 < · · · < ps−K ,

and

wq1 , wq2 , . . . , wqt−K
, where q1 < q2 < · · · < qt−K .

Add (mpi
, yi) toM

′ (1 ≤ i ≤ s−K) and add (xj , wqj ) toM
′ (1 ≤ j ≤ t−K).

Clearly M ′ is a complete matching in I. We claim that M ′ is weakly stable

in I. For, as M is maximal in G,clearly no member of U × W can block

M ′. Suppose (mi, yj) ∈ U × Y blocks M ′. Then (mi, yk) ∈ M ′ for some

yk ∈ Y such that j < k. But then (mr, yj) ∈ M ′ for some mr ∈ U such

that r < i, so (mi, yj) does not block M ′ after all. Similarly no member of

X ×W blocks M ′. Hence M ′ is weakly stable in I.

Conversely suppose that M ′ is a complete weakly stable matching in I.

Let M = M ′ ∩ E. Since each of the t−K men in X is assigned in M ′ to

a woman in W , and each of the s−K women in Y is assigned in M ′ to a

man in X , it follows that

|M | = |M ′| − (t−K)− (s−K) = (s+ t−K)− (s+ t− 2K) = K.

Finally, suppose that M is not maximal in G. Then M ∪ {{mi, wj}} is a

matching in G, for some {mi, wj} ∈ E, where mi ∈ U and wj ∈ W . Hence

(mi, yl) ∈ M ′ for some yl ∈ Y and (xk, wj) ∈ M ′ for some xk ∈ X . It

follows that (mi, wj) blocks M
′ in I, a contradiction. �

Corollary 3.7. max smti is NP-hard.

Using more intricate reductions, the NP-completeness of com smti (and

hence the NP-hardness max smti) has been demonstrated for some highly

restricted cases. For example com smti is NP-complete even if each man’s

list is strictly ordered, and even if each woman’s list is either strictly ordered

or is a tie of length 2 [419].
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The case where preference lists are of bounded length is of practical

interest; typically in applications, the members of at least one set of agents

have “short” preference lists (for example in the case of SFAS, until recently,

each resident was asked to rank up to 6 hospitals in order of preference.)

com smti remains NP-complete even if each preference list is of length at

most 3, and each man’s list is strictly ordered [325,444]. By contrast, max

smti is solvable in polynomial time when the preference lists of one sex are

of length at most 2 [325]. It is currently open as to whether max hrt is

polynomial-time solvable the preference list of each resident is of length at

most 2, and the preference lists of the hospitals are unbounded.

Also of practical significance is the case where the preference lists on one

or both sides of an smti instance are derived from one or two master lists. It

turns out that com smti is NP-complete, even if each man’s preference list

is derived from a strictly-ordered master list of women, and each woman’s

preference list is derived from a master list of men that contains only one tie

[329]. NP-completeness also holds in the case that the master list of women

is strictly ordered, and the master list of men contains ties of length 2 only

(though in general more than one tie) [329].

A further NP-complete case is where the smti instance has symmet-

ric preferences (that is, for any acceptable man–woman pair (mi, wj),

rank(mi, wj) = rank(wj ,mi)) [470, 27].

3.2.5 Parameterized complexity of max smti

Marx and Schlotter [427] studied the parameterized complexity of max

smti under various parameterizations of a given smti instance I, as

follows:

• κ1: the number of ties in I;

• κ2: the maximum length of a tie in I;

• κ3: the total length of the ties in I.

The authors showed that max smti with parameterization κ3 belongs to

FPT. By constrast its decision version with parameterization κ1 is W[1]-

hard, even if ties belong to the women’s lists only. The authors also proved

that if W[1]6=FPT, there is no FPT local search algorithm for max smti

with parameterization ℓ, the size of the neighbourhood to be searched, even

if κ2 = 2 and ties occur in the women’s lists only.
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3.2.6 Approximability of max smti and max hrt

3.2.6.1 Overview of approximability results for max smti

The NP-hardness of max smti implies that the approximability of this

problem is of interest. It is straightforward to show that the problem ad-

mits an approximation algorithm with a performance guarantee of 2 [419]:

namely, break the ties in a given instance I of smti arbitrarily and run

the Gale–Shapley algorithm in the resulting instance of smi to obtain a

stable matching M . The performance guarantee of 2 follows from the fact

that if M ′ is an arbitrary weakly stable matching, each of M and M ′ is

maximal in the underlying bipartite graph G of I, and any two maximal

matchings in G differ in size by at most a factor of 2 [399]1. A number of

improved approximation algorithms for versions of max smti have recently

been proposed.

For the general case, Iwama et al. [336] gave an algorithm with a perfor-

mance guarantee of 2− (c logn)/n, where n is the size of the given instance

and c is a positive constant. This was later improved to 2 − c′/
√
n [341],

where c′ is a positive constant such that c′ ≤ 1/4
√
6. Iwama et al. [340]

gave the first approximation algorithm for the general case with a constant

performance guarantee better than 2, namely 15
8 . This performance guar-

antee was improved to 5
3 by Király [385], and then further improved to 3

2 by

McDermid [437]. Recently Király [386] and Paluch [472] independently de-

rived approximation algorithms for max smti with performance guarantee
3
2 , which were faster (running in O(m) time as opposed to the O(n3/2m)

running time of McDermid’s algorithm, where m is the number of accept-

able pairs in a given instance), and claimed by the authors to be simpler,

than McDermid’s.

As far as special cases are concerned, Halldórsson et al. [272] gave a

(2/(1 + t−2))-approximation algorithm for the case where all ties are on

one side, and are of length at most t — so, for example, this gives a bound

of 8
5 when all ties are of length 2. If ties are on both sides and restricted

to be of length 2, a bound of 13
7 is shown in Ref. [272]. Halldórsson et al.

[271] also described a randomised algorithm with an expected guarantee of
10
7 for the same special case. For the case where ties are on one side only,

1For a short proof of this, observe that each of S1 = V (M) and S2 = V (M ′) is a
vertex cover in G, where V (M) is the set of vertices that are matched by M . Let S be a
minimum vertex cover in G. Then S contains at least one vertex from each edge of M ,
whilst S1 contains two vertices corresponding to each edge of M , so |S| ≥ |S1|/2. Hence
|S1| ≤ 2|S2|, for otherwise |S| ≥ |S1|/2 > |S2|, a contradiction. Since |S1| = 2|M | and
|S2| = 2|M ′|, the result follows.
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there is at most one tie per list, and each tie occurs at the tail of some

list (the tail of an agent ai’s list is the set of one or more agents, tied in

its list, to whom it prefers all other agents in its list), Irving and Manlove

[322] described an approximation algorithm with a performance guarantee

of 5
3 . This bound was later improved to 3

2 by Király [385], and even more

recently to 25
17 by Iwama et al. [347], in both cases for the more general

smti restriction that ties are on one side only, but the number and location

of ties in a given list on that side is unrestricted.

There is also an approximability result for max smti that gives rise to

an additive error bound. If I is an instance of max smti and s+(I) denotes

the maximum size of a weakly stable matching in I, any weakly stable

matching M in I satisfies |M | ≥ s+(I)− t(I), where t(I) is the number of

preference lists in I that contain at least one tie [267].

Many of these positive results also carry over to the max hrt case —

see Sec. 3.2.6.5 for further details.

From the inapproximability point of view, Halldórsson et al. [267]

showed that max smti is not approximable within δ, for some δ > 1,

unless P=NP (see also Ref. [268]). This result holds even if each man’s list

is of length at most 7 and each woman’s list is of length 4 [267], and in

addition to these restrictions, even if each preference list is derived from

two master lists of the men and women [329].

Irving et al. [325] proved that max smti is hard to approximate within

some constant factor for shorter length preference lists on the men’s side.

Theorem 3.8 ([325]). max smti is not approximable within δ, for some

δ > 1, unless P=NP. The result holds even if each man’s list is of length at

most 3, and each woman’s list is of length at most 4.

However in the context of each of the aforementioned inapproximability

results, the constant δ is very close to 1. Halldórsson et al. [272] strength-

ened these results for the case of unbounded length preference lists and gave

a lower bound of 21
19 − ε on any approximation algorithm, for any ε > 0 (as-

suming P 6= NP). This result holds even if each man’s list is strictly ordered,

and each women’s list is strictly ordered or is a tie of length 2. Yanagisawa

[588] improved the lower bound (albeit for the weaker case that ties can

occur on both sides), as follows.

Theorem 3.9 ([588]). max smti is not approximable within 33
29 unless

P=NP. The result holds even if each tie is of length 2.
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Algorithm 3.1 Algorithm Király [386]

1: M := ∅;
2: for each man mi ∈ U do

3: secondChance(mi) := false;
4: exhausted(mi) := false;
5: end for

6: while some man mi ∈ U is unassigned in M and !exhausted(mi) do
7: wj := most-preferred woman on mi’s list; {any one, if more than one}
8: if wj is unassigned in M then

9: M := M ∪ {(mi, wj)};
10: else

11: mk := M(wj);
12: if wj prefers mi to mk or precarious(wj) then
13: reject(mk, wj);
14: M := M ∪ {(mi, wj)};
15: else

16: reject(mi, wj);
17: end if

18: end if

19: end while

20: return M ;

Yanagisawa [588] also showed that if max smti is approximable within
4
3 − ε, then min vertex cover (the problem of finding a vertex cover

of minimum size, given a graph G) is approximable within 2 − ε, for any

ε > 0.2

3.2.6.2 Király’s approximation algorithm

Recently, Király [385, 386] described ingenious approximation algorithms

for max smti and max hrt. In this subsection we describe his algorithm

for general max smti (i.e., ties can occur on both sides) with performance

guarantee 3
2 [386].

Suppose we are given an instance of smti, where U = {m1,m2, . . . ,mn}
is the set of men and W = {w1, w2, . . . , wn} is the set of women. Algorithm

Király, shown in Algorithm 3.1, is a variant of the MEGS algorithm for smi

[261, Sec. 1.2.4]. The algorithm operates as follows. It will ultimately

return a matching M . Initially M is the empty set; consequently each

2The truth of the Unique Games Conjecture (UGC) [376] would imply that, if P 6=NP,
min vertex cover is not approximable within 2− ε, for any ε > 0 [377]. Some authors
therefore state that it is UGC-hard to approximate min vertex cover within 2− ε, for
any ε > 0.
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Algorithm 3.2 Algorithm reject (method for Algorithm Király) [386]

Require: man mi ∈ U and woman wj ∈ W
1: M := M\{(mi, wj)};
2: if !precarious(wj) then
3: delete(mi, wj);
4: if mi’s list is empty then

5: if secondChance(mi) then
6: exhausted(mi) := true;
7: else

8: secondChance(mi) := true;
9: recover(mi);

10: end if

11: end if

12: end if

man and woman is initially unassigned in M . Also, each man mi has two

booleans, secondChance(mi) and exhausted(mi), each of which is false

initially. Intuitively, if secondChance(mi) is true (in which case we say

that mi has a second chance), this means that mi has proposed to (and

has been rejected by) every woman on his preference list, in which case

he is given a second chance to propose to every woman on his list. If

exhausted(mi) is true (in which case we say that mi is exhausted), this

means that mi has already had such a second chance, but has again been

rejected by every woman on his list.

In what follows, the definition of prefers needs to be adapted for the pur-

poses of this algorithm. For a manmi and for two women wj and wk, we say

that mi prefers wj to wk if either (i) rank(mi, wj) < rank(mi, wk) (i.e., mi

prefers wj to wk in the usual sense) or (ii) rank(mi, wj) = rank(mi, wk) and

wj is unassigned in M whilst wk is assigned in M . Thus, in case (ii), if mi is

indifferent (in the usual sense) between two women, one unassigned and the

other assigned in M , then he gives priority to the unassigned woman. For

a woman wj and for two men mi and mk, we say that wj prefers mi to mk

if either (i) rank(wj ,mi) < rank(wj ,mk) (i.e., wj prefers mi to mk in the

usual sense) or (ii) rank(wj ,mi) = rank(wj ,mk) and secondChance(mi)

is true whilst secondChance(mk) is false. Thus, in case (ii), if wj is indif-

ferent (in the usual sense) between two men, one who has a second chance

and one who does not, then she gives priority to the former man.

The while loop of the algorithm iterates as long as we can find an unas-

signed man mi who is not exhausted. Assuming such an mi exists, we let

wj be the most-preferred woman on his preference list (according to his new
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definition of prefers). Intuitively mi proposes to wj . If wj is unassigned in

M then she accepts the proposal and (mi, wj) is added to M . Otherwise

she is assigned in M — let mk be her partner in M . The algorithm tests

whether wj prefers mi to mk (according to her new definition of prefers) or

whether precarious(wj) holds (i.e., whether wj is precarious), which holds

if M(wj) = mk prefers some woman to wj (again, according to his new

definition of prefers)3. If either of these is true, wj rejects mk, which is

carried out by Algorithm reject, shown in Algorithm 3.2, and then (mi, wj)

is added to M . Otherwise, wj rejects mi, which is also carried out by

Algorithm reject.

Algorithm reject works as follows. Assume man mi and woman wj are

passed as parameters. The pair (mi, wj) is removed from M (assuming it

was in M). If wj is precarious then nothing further happens (there are

no deletions from the preference lists in this case). Otherwise wj is deleted

frommi’s list and vice versa. Ifmi’s list becomes empty andmi had already

had a second chance, then mi becomes exhausted. Otherwise mi is given

a second chance to propose to all the women on his preference list — in

particular, the method recover(mi) is called, which reinstates every deleted

woman wk to mi’s list (and equivalently reinstates mi to the list of each

such woman wk).

Once the while loop of Algorithm Király terminates, the final matching

M is returned. The following result, proved in Ref. [386], indicates that M

is a weakly stable matching of size at least two-thirds of that of a maximum

weakly stable matching.

Theorem 3.10 ([386]). Algorithm Király is a 3
2 -approximation algorithm

for max smti.

3.2.6.3 Comparison of approximation algorithms for max smti

Podhradský [483] compared empirically a range of approximation algo-

rithms for max smti for the following cases: (i) ties are on both sides,

(ii) ties belong to the women’s lists only, and (iii) men’s lists are strictly

ordered, and each women’s list is either strictly ordered or has one tie at the

tail. The third case corresponds to the practical scenario (which used to be

relevant in the context of the Scottish Foundation Allocation Scheme [604])

in which women rank a subset of men in strict order of preference, and then

express indifference among the remaining men that they find acceptable.

3This possibility can arise if, among the most-preferred tie comprising undeleted women
on mk’s list, there are two single women, and mk became provisionally assigned to one
of them.
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The approximation algorithms that Podhradský featured in his experi-

ments were as follows:

• Case (i):

◦ IMY (performance guarantee 15
8 ) [340];

◦ Király–GSA2 (performance guarantee 5
3 ) [385];

◦ McDermid (performance guarantee 3
2 ) [437];

◦ Paluch (performance guarantee 3
2 ) [472];

◦ RandBrk [271] 4;

◦ ShiftBrk (performance guarantee 2/(1+ t−2) where t is the longest tie

length) [272];

• Case (ii):

◦ all of the algorithms from Case (i);

◦ GSA–LP (performance guarantee 25
17 ) [343];

◦ Király–GSA1 (performance guarantee 3
2 ) [385];

• Case (iii):

◦ all of the algorithms from Cases (i) and (ii);

◦ SSMTIApprox (performance guarantee 5
3 ) [322].

The author also implemented an algorithm for finding a maximum stable

matching based on an integer programming formulation of max smti. The

algorithms were compared against one another on a range of randomly-

generated smti instances of varying sizes corresponding to the above re-

strictions, where the lengths of the ties were bounded in some cases. The

lengths of the preference lists do not appear to have been bounded, though

this detail is unclear from the accompanying discussion.

The results for case (i) indicate that McDermid’s algorithm produced

the largest stable matchings and was the fastest on average. For case (ii),

no single algorithm was the clear-cut winner, although in the experiments

performed, ShiftBrk, GSA–LP, Király–GSA1 and McDermid (the latter two

algorithms are essentially the same in this case) performed well. In case (iii),

it is interesting to note that, although SSMTIApprox performed reasonably

well, it was generally beaten by other approximation algorithms for the

instances generated, despite being specifically designed for this restriction

of smti.
4This approximation algorithm was in fact mainly analysed in Ref. [271] for the re-

striction of Case (ii) in which each tie is of length 2, however Podhradský analysed
the algorithm in the general case in which ties are on both sides and their length is
unbounded.
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Király’s newest approximation algorithm for general max smti [386]

came too late to be included in this study.

3.2.6.4 Heuristics for max hrt

Two heuristics for the special case of max hrt in which ties belong to hos-

pitals’ lists only were presented by Irving and Manlove in Ref. [323]. The

first of these (Algorithm R) is an extension of the RGS algorithm for hr

and employs network flow to attempt to optimise the size of the constructed

weakly stable matching. The second (Algorithm H) is a variant of the HGS

algorithm for hr and utilises maximum matching in bipartite graphs to

attempt to maximise the cardinality of its weakly stable matching. Both

of these heuristics were compared empirically with an implementation of

Király’s 3
2 -approximation algorithm for this restricted version of hrt (Algo-

rithm HRGSA1 from Ref. [385]) and with two simple random tie-breaking

heuristics using both real-world and randomly-generated data [322].

For example, data arising from the 2006 SFAS run involved 759 residents

and 53 hospitals with a total capacity of 801. When each algorithm was

run for 5 minutes, the maximum sizes of weakly stable matchings found

by each of Algorithm R, Algorithm H, Király’s algorithm and the two

random tie-breaking heuristics were 755, 753, 753, 746 and 744 respec-

tively. Empirical results for real data from the 2007 and 2008 SFAS runs,

and from randomly-generated instances, confirmed a pattern of behaviour,

namely that the largest weakly stable matching found by Algorithm R was

consistently larger than, or at least as large as, those found by the other

heuristics.

We remark that Algorithms R and H were not considered by Podhradský

in his empirical investigation as summarised in the previous subsection.

Local search heuristics for max smti were presented by Gelain et al.

[246, 247]. The authors generated random smti instances of size 100 with

varying density of ties in the preference lists, and varying levels of incom-

pleteness of the lists. They showed that a heuristic based on satisfying

so-called undominated blocking pairs almost always finds a complete stable

matching. See also Refs. [251, 252, 244, 248].

3.2.6.5 “Cloning” hospitals

Clearly the NP-hardness and inapproximability results proved in Secs. 3.2.4

and 3.2.6 carry over to max hrt, the problem of finding a maximum weakly

stable matching, given an instance of hrt. We now show that, under
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certain conditions, the approximation algorithms for max smti described

in Sec. 3.2.6.1 can also be applied to instances of max hrt, achieving the

same performance guarantee.

It is known that, by identifying residents with men, and “cloning” each

hospital into a number of women equal to its capacity, an instance I of hr

may be transformed in polynomial time to an instance I∗ of smi such that

there is a bijective function between the set of stable matchings in I and

those in I∗ [261, p.38] (see also Ref. [514, pp.131–132]). As we now show, a

similar reduction holds from hrt to max smti in the case of weakly stable

matchings, preserving matching cardinality, however the correspondence is

no longer a bijective function in general.

Theorem 3.11. Given an instance I of hrt, we may construct in O(n1 +

cmaxm) time an instance I ′ of smti such that a weakly stable matching M in

I can be transformed in O(cmaxm) time to a weakly stable matching M ′ in

I ′ where |M | = |M ′|, and conversely, where n1 is the number of residents,

cmax is the maximum hospital capacity and m is the number of acceptable

resident–hospital pairs in I.

Proof. Let I be an instance of hrt in which R = {r1, r2, . . . , rn1
} is the

set of residents and H = {h1, h2, . . . , hn2
} is the set of hospitals. Let cj be

the capacity of hospital hj ∈ H . We form an instance I ′ of smti as follows.

Each resident in I corresponds to a man in I ′. Each hospital hj ∈ H gives

rise to cj women (hospital “clones”) in I ′, denoted by h1
j , h

2
j , . . . , h

cj
j , each

of whom has the same preference list as hj in I ′. Each man ri ∈ R starts

off with the same preference list in I ′ as he has in I. We then replace

each entry hj on his list by the cj women h1
j , h

2
j , . . . , h

cj
j . These women are

listed in strict order (with increasing superscripts) in the case that hj is

not involved in a tie in ri’s preference list in I, otherwise the women are

simply added to that tie in I ′.

Now let M be a weakly stable matching in I. We form a matching

M ′ in I ′ as follows. For each hj ∈ H , let rj,1, rj,2, . . . , rj,xj
be the set of

residents assigned to hj in M , where xj ≤ cj , and k < l implies that hj

prefers rj,k to rj,l or is indifferent between them. Add (rj,k, h
k
j ) to M ′

(1 ≤ k ≤ xj). Clearly M ′ is a matching in I ′ such that |M ′| = |M |, and it

is straightforward to verify that M ′ is weakly stable in I ′.

Conversely let M ′ be a weakly stable matching in I ′. We form a match-

ing M in I as follows. For each (ri, h
k
j ) ∈ M ′, add (ri, hj) to M . Clearly

M is a weakly stable matching in I such that |M | = |M ′|.
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The stated time complexities follow from the fact that I ′ has O(n1+C)

agents and O(cmaxm) acceptable man–woman pairs, where C is the total

capacity of the hospitals in I. �

An immediate consequence of Theorem 3.11 is that, given an approxi-

mation algorithm A for max smti with performance guarantee δ, for some

constant δ > 1, we may obtain (except in certain cases, as we will describe

shortly) an approximation algorithm for max hrt with the same perfor-

mance guarantee as follows. Starting from an instance I of max hrt,

simply apply A to the instance I ′ of max smti as constructed by the proof

of Theorem 3.11, and map the obtained weakly stable matching M ′ in I ′

to a weakly stable matching M in I such that |M | = |M ′|. The special

cases that constitute an exception to this arise when A depends on certain

properties of the preference lists that are not preserved under “cloning”: an

example of such a property is the length of the ties in the residents’ lists,

which are in general inflated under such a transformation. This implies

that the approximation algorithms for max smti mentioned in the previ-

ous subsection, except for those with performance guarantees 2/(1 + t−2),
10
7 and 13

7 [271,272], also yield approximation algorithms for corresponding

versions of max hrt with the same performance guarantees.

3.2.7 Other problems involving weak stability

In this section we describe some additional problems involving the compu-

tation of weakly stable matchings — many of these problems turn out to

be NP-hard.

Minimum weakly stable matchings. Define min smti to be the prob-

lem of finding a minimum cardinality weakly stable matching (henceforth a

minimum weakly stable matching), given an instance of smti. min smti is

NP-hard, even if each tie occurs at the tail of some woman’s list, there is at

most one tie per list, and each tie is of length 2 [419]. Thus instances of smti

give rise to minimisation and maximisation problems that are NP-hard for

the same simultaneous restrictions — there are relatively few examples in

the literature where this phenomenon occurs. Lower bounds for the ap-

proximability of min smti are given in Refs. [267, 587].

As noted in Sec. 3.2.6.1, a maximal matching is at most twice the size of

a minimum maximal matching, and hence min smti is approximable within

2. Also, if I is an instance of min smti and s−(I) denotes the size of a
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minimum weakly stable matching in I, any weakly stable matching M in

I satisfies |M | ≤ s−(I) + t(I), where t(I) is the number of preference lists

in I that contain at least one tie [267]. This gives a form of approximation

algorithm for min smti with an additive error bound.

Weakly stable pairs. It is unlikely that there is an efficient algorithm

for finding all weakly stable pairs in I, for, it turns out that the problem of

deciding whether a man–woman pair is weakly stable in I is NP-complete.

This holds even if I is an instance of smt in which the ties occur at the

tails of lists and on one side only, there is at most one tie per list, and each

tie is of length 2 [419].

Three additional NP-complete cases are where (i) I is an instance of

smt with symmetric preferences [470], (ii) I is an instance of smt in which

the preference lists on one side are identical, and ties occur on one side

only, and (iii) I is an instance of smti in which the preference lists on both

sides are derived from two master lists of men and women, one of which is

strictly ordered [329].

However if I is an instance of smt in which the preference lists on both

sides are derived from two master lists of men and women (both of which

may contain ties), the weakly stable pairs in I can be found in O(n + s)

time, where n is the size of I, and s is the number of weakly stable pairs

in I [329].

Minimum regret weakly stable matchings. The problem of finding a

minimum regret weakly stable matching, given an instance I of smt, is NP-

hard and not approximable within n1−ε, for any ε > 0, unless P=NP [419].

Here n is the size of I. The result holds even if the ties occur on one side

only, there is at most one tie per list, and each tie is of length 2 [419]. The

lower bound for the inapproximability of this problem was strengthened to

Ω(n) in Ref. [267] though without the restrictions involving the ties.

NP-hardness also holds even if I is an instance of smt in which the

men’s preference lists are derived from a single master list of women, which

contains a tie at the tail, even if the women’s lists are strictly ordered [329].

However, if there is no tie at the tail of this master list, the problem is

solvable in O(n2) time (even if women’s lists contain ties) [329]. Given

an instance of smt in which the preference lists on both sides are derived

from two master lists of men and women, a minimum regret weakly stable
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matching can be found in O(n) time [329]. NP-hardness also holds for smt

with symmetric preferences [470, 27].5

Marx and Schlotter [427] also showed that the problem belongs to FPT

with parameterization κ3, though there is no FPT approximation algorithm

for the problem with parameterization κ1 that has a performance guarantee

of n1−ε, for any ε > 0, unless W[1]=FPT (see Sec. 3.2.5 for the definitions

of κ1 and κ3 in this context).

Egalitarian weakly stable matchings. The problem of finding an egal-

itarian weakly stable matching, given an instance I of smt, is NP-hard and

not approximable within n1−ε, for any ε > 0, unless P=NP [419]. Here n

is the size of I. The result holds even if the ties occur on one side only,

there is at most one tie per list, and each tie is of length 2 [419]. The lower

bound for the inapproximability of this problem was strengthened to Ω(n)

in Ref. [267] though without the restrictions involving the ties.

NP-hardness also holds even if I is an instance of smt in which the

men’s preference lists are derived from a single master list of women, even

if ties occur on one side only [329]. This particular restriction is, however,

approximable within a factor of 3 [329]. Given an instance of smt in which

the preference lists on both sides are derived from two master lists of men

and women, an egalitarian weakly stable matching can be found in O(n)

time [329]. NP-hardness also holds for smt with symmetric preferences

[470, 27] (see Footnote 5 on Page 146).

Marx and Schlotter [427] also show that the problem belongs to FPT

with parameterization κ3, though there is no FPT approximation algorithm

for the problem with parameterization κ1 that has a performance guarantee

of δn, for some δ > 0, unless W[1]=FPT, even if ties belong to the women’s

lists only (see Sec. 3.2.5 for the definitions of κ1 and κ3 in this context).

Sex-equal weakly stable matchings. The problem of finding a sex-

equal weakly stable matching, given an instance I of smt, is NP-hard and

not approximable within Ω(n) unless P=NP [267].

Generation of weakly stable matchings. It is not known whether

there is an efficient algorithm for listing all weakly stable matchings, given

an instance I of smt of size n. By efficient, we mean that the algorithm

should have complexity O(p(n) + kq(n)), where p and q are polynomial

5This NP-hardness result holds for a slightly different definition of rank, namely
rank(mi, wj) = k if and only if wj belongs to the kth tie in mi’s preference list, and
similarly for rank(wj ,mi), for any acceptable pair (mi, wj).
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functions and k is the number of weakly stable matchings in I. A partial

result along these lines is, however, provided by Scott [523]. He showed

that, given a weakly stable matching M in I, we can, in polynomial time,

find a weakly stable matching M ′ 6= M if one exists, or else report that M

is unique. If I is an instance of smt in which the preference lists on both

sides are derived from two master lists of men and women, all the weakly

stable matchings in I can be generated in O(n+ s+ k logn) time, where s

is the number of weakly stable pairs in I [329].

Pareto stable matchings. In instances of smti or srti, Sotomayor [546]

defined a Pareto stable matching to be a matching that is both weakly

stable and Pareto optimal (note that it is straightforward to extend the

Pareto optimality definition from Sec. 1.5.3 to the smti and srti contexts).

In particular, in the smti case, a Pareto stable matching is Pareto optimal

with respect to both men and women. Sotomayor remarked that a strongly

stable matching is Pareto stable. She also gave an example srti instance

with a weakly stable matching that is not Pareto stable, and a Pareto stable

matching that is not strongly stable.

Erdil and Ergin [192] considered Pareto stable matchings in hrt. In

order to define such matchings, we must first define Pareto optimality in

the context of an hrt instance I. The definition of prefers relative to two

matchings in I for a resident ri ∈ R is the same as that given in Sec. 1.5.3

for an applicant in the context of an ha instance.

In order to define prefers for a hospital hj ∈ H , we assume that hospi-

tals’ preferences over subsets are responsive [500] to their preferences over

individuals (see also Sec. 5.4.4). That is, (i) for any R′ ⊆ A(hj) such that

|R′| < cj and for any ri ∈ A(hj)\R′, hj prefers R′ ∪ {ri} to R′, and (ii) for

any two subsets R′, R′′ ⊆ A(hj) such that R′′ = (R′\{ri}) ∪ {rk} for two

distinct residents ri ∈ R′ and rk ∈ R′′, hj prefers R′′ to R′ if and only if hj

prefers ri to rk. (That is, if one set of assignees is obtained from another

by adding an acceptable resident, then the hospital prefers the larger set

of assignees, and if two sets of assignees differ by replacing one resident ri
by another, rk, then the hospital prefers the set with the most-preferred

resident from among ri and rk). In addition, we take the transitive closure

of this definition to arrive at the final notion of prefers for hj over subsets

of residents. Thus, given two matchings M and M ′ in I, hj prefers M to

M ′ if and only if hj prefers M(hj) to M ′(hj).

A matching M in I is then Pareto optimal if there is no other matching

M ′ in I such that some agent in I prefers M ′ to M and no agent in I
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prefers M to M ′. M is Pareto stable if it is both weakly stable and Pareto

optimal in I.

Erdil and Ergin [192] defined the concepts of a Pareto improvement

cycle and a Pareto improvement chain with respect to a given matching M

in an hrt instance I as follows.

Definition 3.12 ([192]). Let I be an instance of hrt and let M be a

matching in I. A Pareto improvement cycle with respect to M is a sequence

of residents r0, . . . , rk−1, for some k ≥ 2, each assigned in M , such that

(1) for each i (0 ≤ i ≤ k−1), ri prefers M(ri+1) to M(ri) or is indifferent

between them, and M(ri+1) prefers ri to ri+1 or is indifferent between

them;

(2) there is some j (0 ≤ i ≤ k − 1) such that either rj prefers M(rj+1) to

M(rj) or M(rj+1) prefers rj to rj+1;

where addition is taken modulo k. Similarly a Pareto improvement chain

with respect to M is a sequence of residents r0, . . . , rk−1, for some k ≥ 2,

and a hospital h such that

(1) r0 is unassigned in M , whilst for each i (1 ≤ i ≤ k − 1), ri is assigned

in M ;

(2) r0 finds M(r1) acceptable;

(3) h is undersubscribed in M ;

(4) for each i (1 ≤ i ≤ k−2), ri prefers M(ri+1) to M(ri) or is indifferent

between them;

(5) for each i (0 ≤ i ≤ k − 2) M(ri+1) prefers ri to ri+1 or is indifferent

between them;

(6) rk−1 prefers h to M(rk−1) or is indifferent between them.

Erdil and Ergin showed that a weakly stable matching is Pareto stable if and

only if it admits no Pareto improvement chain or Pareto improvement cycle.

They gave an O(n3
1C) algorithm for finding a Pareto stable matching, where

n1 is the number of residents and C is the total capacity of the hospitals

in I. This algorithm is based on repeatedly finding and applying Pareto

improvement cycles and chains, starting from an arbitrary weakly stable

matching; note that the weak stability of the matching is preserved after

each such augmentation.

Chen [138] (see also Ref. [140]) described a strongly polynomial-time

algorithm for finding a Pareto stable matching in an instance of the many–

many stable marriage problem with ties and incomplete lists. An alterna-

tive algorithm for the same problem was given by Kamiyama [356].
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Returning to the hrt setting, Erdil and Ergin [192] also considered the

problem of finding a weakly stable matching that is Pareto optimal for the

residents only — we call such a matching a resident-Pareto stable match-

ing. That is, a weakly stable matching M is resident-Pareto stable if and

only if there is no matching M ′ in which some resident prefers M ′ to M ,

and no resident prefers M to M ′. They identified analogues of the notions

of Pareto improvement cycles and chains for this context, which we refer

to as resident-Pareto improvement cycles and resident-Pareto improvement

chains6 respectively. Note that, in contrast to the case for Pareto stable

matchings, a hospital could be worse off after a resident-Pareto improve-

ment cycle or chain is applied. The authors showed that a weakly stable

matching is resident-Pareto stable if and only if it admits no resident-Pareto

improvement chain or resident-Pareto improvement cycle. They gave an

O(n3
1n2) algorithm for finding a resident-Pareto stable matching in I, where

n2 is the number of hospitals in I. As in the case of Pareto stable matchings,

this algorithm is based on repeatedly finding and applying resident-Pareto

improvement cycles and chains, starting from an arbitrary weakly stable

matching; again, the weak stability of the matching is preserved after each

such augmentation.

Erdil and Ergin [193] studied resident-Pareto stable matchings in in-

stances of hrt where resident preference lists are strictly ordered. In such

a setting, a weakly stable matching is resident-Pareto stable if and only

if it admits no resident-Pareto improvement cycle (that is, resident-Pareto

improvement chains need not be considered).7 Erdil and Ergin showed

that, for such an instance of hrt, a resident-Pareto stable matching can

be found in O(n1n2m) time, where m is the number of acceptable pairs.

Abdulkadiroǧlu et al. [3] reported that, had Erdil and Ergin’s algorithm for

finding and applying resident-Pareto improvement cycles been executed on

the preference data arising from the 2003–04 New York City High School

Match, 6,854 students (equating to 10.5% of the 63,795 matched students)

would have been matched with schools higher on their preference lists with-

out any other student receiving a poorer school.

6Erdil and Ergin [192] used the terms workers and firms, rather than residents and
hospitals, and they referred to resident-Pareto improvement cycles and resident-Pareto
improvement chains as stable worker improvement cycles and stable worker improve-
ment chains respectively.
7Erdil and Ergin [193] referred to resident-Pareto improvement cycles as stable

improvement cycles.
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Men’s preferences Women’s preferences
m1 : w1 w2 w1 : (m1 m2)
m2 : w1 w2 w2 : m1 m2

Fig. 3.3 An instance of smt with no strongly stable matching

3.3 Strong stability

This section focuses on strong stability in the context of smt, smti and

hrt instances. There is a sense in which strong stability can be viewed as

the most appropriate criterion for a practical matching scheme when there

is indifference in the preference lists, and that in cases where a strongly

stable matching exists, it should be chosen instead of a matching that is

merely weakly stable. Consider a weakly stable matching M for an instance

of hrt, and suppose that a resident ri prefers a hospital hj to her assigned

hospital in M , whilst hj is full and is indifferent between ri and its worst

assignee rk in M . Such a pair (ri, hj) would not constitute a blocking pair

for weak stability. However, ri might have such an overriding preference for

hj over M(ri) that she is prepared to engage in persuasion, even bribery,

in the hope that hj will reject rk and accept ri instead. Hospital hj , being

indifferent between ri and rk, may yield to such persuasion, and, of course, a

similar situation could arise with the roles reversed. However, the matching

cannot be potentially undermined in this way if it is strongly stable.

We begin by providing in Sec. 3.3.1 an example smt instance that ad-

mits no strongly stable matching. We also give a necessary and sufficient

condition for a matching to be strongly stable in an hrt instance in terms

of instances of hr obtained by tie-breaking. In Sec. 3.3.2 we show that the

Rural Hospitals Theorem holds for strongly stable matchings in the context

of hrt. We also demonstrate that a strongly stable matching, if one exists,

is at least two-thirds of the size of a maximum weakly stable matching. Sec-

tion 3.3.3 demonstrates that the set of strongly stable matchings in an smt

instance forms a distributive lattice. Then, in Section 3.3.4, we describe an

O(Cm) algorithm due to Kavitha et al. [364] for finding a strongly stable

matching or reporting that none exists, given an hrt instance where C is

the total capacity of the hospitals and m is the number of acceptable pairs.

3.3.1 Existence of a strongly stable matching

An instance of smt need not admit a strongly stable matching. To see

this, consider the smt instance I shown in Fig. 3.3. The matching
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{(m1, w1), (m2, w2)} is blocked by (m2, w1), whilst the matching

{(m1, w2), (m2, w1)} is blocked by (m1, w1).

We now give an equivalent criterion for strong stability in terms of tie-

break instances, which utilises the notation defined just before Lemma 3.1.

Theorem 3.13. Let I be an instance of hrt, and let M be a matching

in I. Then M is strongly stable in I if and only if M is stable in every

member of RM (I) ∪HM (I).

Proof. Let R = {r1, . . . , rn1
} be the residents in I, and let H =

{h1, . . . , hn2
} be the hospitals in I. Suppose M is a strongly stable match-

ing in I. Let I ′ ∈ HM (I). Suppose that (ri, hj) blocks M in I ′. Then hj is

undersubscribed or prefers ri to at least one member of M(hj) in I ′. But

this is also true in I, in view of the way that ties were broken to form I ′.

Also either ri is unassigned or prefers hj to M(ri) or is indifferent between

them. Hence (ri, hj) blocks M in I, a contradiction. Using a similar proof

it follows that M is stable in every member of RM (I).

Conversely suppose thatM is stable in every member ofRM (I)∪HM (I).

Suppose that (ri, hj) blocks M in I. Suppose firstly that ri is unassigned

or prefers hj to M(ri) in I. Then in I, hj is undersubscribed or prefers

ri to at least one member of rk ∈ M(hj) or is indifferent between them.

Then (ri, hj) blocks M in any member of RM (I) in which hj prefers ri to

rk, a contradiction. A similar contradiction involving HM (I) holds if hj is

undersubscribed or prefers ri to some member of M(hj) in I. �

3.3.2 Rural Hospitals Theorem for strongly stable match-

ings in hrt

In Sec. 1.3.3 we presented the Rural Hospitals Theorem for stable matchings

in an instance of hr. We now state a counterpart of this result for strongly

stable matchings in the context of hrt.

Theorem 3.14 ([327]). Let I be a given instance of hrt. Then:

(i) the same residents are assigned in all strongly stable matchings;

(ii) each hospital is assigned the same number of residents in all strongly

stable matchings;

(iii) any hospital that is undersubscribed in one strongly stable matching

is assigned exactly the same set of residents in all strongly stable

matchings.
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m1 : w1 w1 : m2 m1

m2 : (w1 w2) w2 : (m2 m3)
m3 : w2 w3 w3 : m3

m4 : (w4 w5) w4 : (m4 m5)
m5 : (w4 w6) w5 : (m4 m6)
m6 : (w5 w6) w6 : (m5 m6)

Men’s preferences Women’s preferences

Fig. 3.4 An instance of smti

By contrast to Theorem 3.14, it has already been observed in Sec. 3.2.3

that weakly stable matchings can be of different sizes, given an instance of

smti. Indeed it turns out that it is possible to find weakly stable matching

both smaller than, and larger than, the size of a strongly stable matching

in a given instance of smti, as the following example shows.

Consider the smti instance I shown in Fig. 3.4, and the following match-

ings in I:

M1 = {(m2, w1), (m3, w2), (m4, w4), (m6, w6)}
M2 = {(m2, w1), (m3, w2), (m4, w4), (m5, w6), (m6, w5)}
M3 = {(m2, w1), (m3, w2), (m4, w5), (m5, w4), (m6, w6)}
M4 = {(m1, w1), (m2, w2), (m3, w3), (m4, w4), (m5, w6), (m6, w5)}

It may be verified that each of M2 and M3 is a strongly stable matching of

size 5, whilst M1 is a weakly stable matching of size 4 and M4 is a weakly

stable matching of size 6. In an hrt instance I, although a weakly stable

matching can be larger than the size of a strongly stable matching in I, it

turns out that the former can never be more than 3
2 times as large as the

latter, as the following result indicates.

Theorem 3.15 ([523]). Let I be an instance of hrt, let M be a strongly

stable matching in I and let M ′ be a maximum weakly stable matching in

I. Then |M ′| ≤ 3
2 |M | − 1

2uM , where uM =
∑

hj∈H′ fj, where H ′ is the set

of hospitals that are undersubscribed in M , and fj is the number of posts

that a hospital hj ∈ H ′ fills in M.

3.3.3 Strongly stable matchings form a lattice

Let S denote the set of strongly stable matchings for a given smt instance

I. In this section we show that, with the aid of a suitable equivalence
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relation defined on S, we may deduce that S forms a distributive lattice.

For brevity we describe the lattice for the smt case, however the structural

results of this section may be extended to hrt in a manner analogous to

the extension of the lattice results for stable matchings in sm to the hr case

[261, Sec. 1.6.5].

We begin with the following result, which is central to establishing the

lattice structure.

Theorem 3.16 ([415]). Let I be an instance of smt, and let M,M ′ be

two strongly stable matchings in I. Suppose that (mi, wj) ∈ M\M ′. Then

either

(i) one of mi, wj prefers M to M ′, and the other prefers M ′ to M , or

(ii) both mi and wj are indifferent between M and M ′.

We now define the equivalence relation∼ on S, on whose equivalence classes

the lattice dominance relation will be defined.

Definition 3.17. Let S denote the set of strongly stable matchings for a

given smt instance, and let M,M ′ ∈ S. Define an equivalence relation ∼
on S as follows: M ∼ M ′ if and only if each man is indifferent8 between

M and M ′. Denote by C the set of equivalence classes of S under ∼, and

denote by [M ] the equivalence class containing M , for M ∈ S.

We now define the dominance relation for the lattice.

Definition 3.18. Let S denote the set of strongly stable matchings for a

given smt instance, and let M,M ′ ∈ S. Then M dominates M ′, denoted

by M � M ′, if each man either prefers M to M ′, or is indifferent between

them.9 Now let C and [M ] be as defined in Definition 3.17. We may

extend � to a partial order �∗ defined on equivalence classes as follows:

for any two equivalence classes [M ], [M ′] ∈ C, [M ] �∗ [M ′] if and only

if M � M ′.

It turns out that (C,�∗) forms a lattice, as the following results indicate.

In order to define the “meet” and “join” operations for two strongly

stable matchings in I, we require the following notation. Given two strongly

stable matchings M,M ′ ∈ S, let Ũ(M,M ′) be the set of men in I who are

8The same equivalence classes arise if we define M ∼ M ′ if and only if each woman is
indifferent between M and M ′.
9The same lattice structure prevails if we define M � M ′ if and only if each woman

either prefers M to M ′, or is indifferent between them.
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indifferent between M and M ′ (note that possibly Ũ(M,M ′) = ∅.) The

following lemma is key to defining the “meet” operation.

Lemma 3.19 ([415]). Let I be an instance of smt, and let M,M ′ be two

strongly stable matchings in I. Let M∗ be a set of man–woman pairs defined

as follows: for each man mi ∈ Ũ(M,M ′), mi has in M∗ the same partner

as in M , and for each man mi /∈ Ũ(M,M ′), mi has in M∗ the better of

his partners in M and M ′. Then M∗ is a strongly stable matching.

We denote by M ∧ M ′ the strongly stable matching M∗ defined by

Lemma 3.19. We remark that, in general, it need not be the case that

M ∧M ′ = M ′ ∧M , however it certainly is true that [M ∧M ′] = [M ′ ∧M ].

We now present a result along the same lines as Lemma 3.19, which will

be key to our definition of a join operation between two equivalence classes.

Lemma 3.20 ([415]). Let I be an instance of smt, and let M,M ′ be two

strongly stable matchings in I. Let M∗ be a set of man–woman pairs defined

as follows: for each man mi ∈ Ũ(M,M ′), mi has in M∗ the same partner

as in M , and for each man mi /∈ Ũ(M,M ′), mi has in M∗ the poorer of

his partners in M and M ′. Then M∗ is a strongly stable matching.

We denote by M ∨M ′ the strongly stable matching M∗ defined by Lemma

3.20. As in the case of the meet operation, we remark that, in general, it

need not be the case that M ∨M ′ = M ′ ∨M , however it does follow that

[M ∨M ′] = [M ′ ∨M ].

The following theorem presents our main result of this section.

Theorem 3.21 ([415]). Let I be an instance of smt, and let S be the set

of strongly stable matchings in I. Let C be the set of equivalence classes of

S under ∼ (as defined by Definition 3.17), and let �∗ be the dominance

partial order on C (as defined in Definition 3.18). Then (C,�∗) forms a

distributive lattice, with [M ∧M ′] representing the meet of [M ] and [M ′],

and [M ∨M ′] the join, for two equivalence classes [M ], [M ′] ∈ C.

3.3.4 Finding a strongly stable matching

The problem of finding a strongly stable matching, or reporting that none

exists, was shown to be solvable in O(n4) time, given an instance I of smt

of size n [308]. This algorithm was extended to the smti case with the same

time complexity [414] and to the hrt case with complexity O(m2), wherem
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is the number of acceptable pairs [327,328]. Later, an O(nm) improvement

was obtained by Kavitha et al. [364] for smti. They also extended their

algorithm to the hrt context — in this case the time complexity is O(Cm),

where C is the sum of the hospital capacities. In this section we present

the algorithm of Kavitha et al. [364] for the hrt case.

For a given instance I of hrt, Algorithm HRT-Strong-Res, shown in

Algorithm 3.3, finds a strongly stable matching or reports that none ex-

ists. This algorithm is resident-oriented (as noted in Sec. 1.3.7, practical

matching schemes based on the hr problem model tend to employ resident-

oriented versions of the Gale–Shapley algorithm). We now describe infor-

mally an execution of Algorithm HRT-Strong-Res.

The algorithm maintains two assignment relations, A and M , where

M is a matching in I, though A in general is not, as hospitals can be

oversubscribed in A. We shall refer to the zth iteration of the outer while

loop as phase z (z ≥ 1). During a particular phase, residents apply to

hospitals, and the preference lists are reduced by potential deletions of

pairs that cannot belong to a strongly stable matching. By a resident ri’s

current list at a particular point during the algorithm’s execution, we mean

ri’s list after any deletions have been carried out up to this point.

The while loop on line 3 iterates as long as there is a resident ri ∈ R

who is unassigned in A and whose current list is non-empty. As long as this

is the case, ri applies to each hospital hj at the head of her current list (this

is the set of one or more hospitals, tied in her current list, which she prefers

to all other hospitals in her list). The pair (ri, hj) is then added to A. If hj

is full or oversubscribed in A, we then consider hj ’s poorest assignee rk in

A (according to its current list) — if there is more than one, we let rk be

any representative member of this tied group. For each resident rl inferior

to rk on hj ’s current list, we remove (rl, hj) from A if it is in that set, and

delete the pair (rl, hj), which refers to the operation of each of rl and hj

deleting one another from their current lists.

Once the inner while loop terminates (as indeed it must, since every

iteration involves a resident becoming assigned, or a pair being deleted),

we let Gz = (Rz, Hz, Ez) be the reduced assignment graph at phase z. To

describe this graph, we need some preliminary definitions. By the tail of a

hospital’s list, we mean the set of one or more residents, tied in its current

list, to whom it prefers all other residents in its list. A pair (ri, hj) ∈ A is

said to be bound if hj is not oversubscribed in A, or ri is not in hj ’s tail,

or both. The pair (ri, hj) is unbound if it is not bound. Intuitively, pairs

in A that are bound at the termination of the main loop have priority over
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Algorithm 3.3 Algorithm HRT-Strong-Res [364]

Require: hrt instance I
Ensure: return a strongly stable matching M ′ in I or “no strongly stable match-

ing exists”
1: M := ∅; A := ∅; z := 1;
2: while a resident ri ∈ R is unassigned in A and has a non-empty list do
3: while a resident ri ∈ R is unassigned in A and has a non-empty list do
4: for each hospital hj at the head of ri’s list do

5: {ri applies to hj}
6: A := A ∪ {(ri, hj)};
7: if hj is full or oversubscribed in A then

8: rk := worst resident in A(hj) according to hj ’s list; {any, if > 1}
9: for each strict successor rl of rk on hj ’s list do

10: A := A\{(rl, hj)}; delete the pair (rl, hj);
11: end for

12: end if

13: end for

14: end while

15: Gz = (Rz,Hz, Ez) := reduced assignment graph at phase z;
16: for each resident ri ∈ Rz who is unassigned in M do

17: if there exists an alternating path from ri to a free hospital in Gz then

18: hj := free hospital of maximal level reachable
from ri via an alternating path;

19: p := alternating path from ri to hj ;
20: M := M ⊕ p;
21: else

22: Z := set of residents reachable from ri by alternating paths in Gz;
23: N(Z) := {hj ∈ H : (ri, hj) ∈ A ∧ ri ∈ Z};
24: for each hospital hj ∈ N(Z) do
25: for each resident rk at the tail of hj ’s list do

26: A := A\{(rk, hj)}; delete the pair (rk, hj);
27: end for

28: end for

29: end if

30: z++;
31: end for

32: end while

33: M ′ := feasible matching with respect to A;
34: if M ′ is strongly stable in I then

35: return M ′;
36: else

37: return “no strongly stable matching exists”;
38: end if
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unbound pairs for inclusion in a potential strongly stable matching, for a

bound pair would block a matching if it were not included. A resident ri
is said to be bound if ri is a member of a bound pair of A, and unbound

otherwise. The reduced assignment graph comprises the unbound residents,

denoted by Rz, the set of hospitals that are collectively assigned in A to

residents in Rz, denoted by Hz, and the edges in A∩(Rz×Hz), denoted by

Ez. In this graph, the capacity of each hospital is c′j , which is defined to be

cj minus the number of bound edges incident to hj in A. In practice, the

graph Gz is constructed from Gz−1, where G0 is the empty graph; see Ref.

[364] for further details. Intuitively the algorithm maintains a maximum

cardinality matching M in Gz, and this is ultimately unioned with the

bound pairs in A.

For each resident ri ∈ Rz who is unassigned in M , we search for an

alternating path from ri to a free hospital in Gz . Such a hospital hj satisfies

|M(hj)| < c′j . If such a hospital exists, then among all of these, we select

hj to have maximum level. Here, the level of an edge (rk, hl) ∈ Ez is the

minimum y (1 ≤ y ≤ z) such that (rk, hl) was added to Gy during phase

y, and the level of a hospital hl ∈ Hz is the minimum level of the edges

incident to hl in Gz. Let p be an alternating path from ri to hj ; we then

augment M along p. Giving priority to free hospitals with maximum level

allows the number of edges traversed upon augmenting path searches to be

bounded, when considering the algorithm’s complexity analysis.

If an alternating path from ri to a free hospital in Gz does not exist,

then we let Z be the set of residents reachable from ri by an alternating

path in Gz , and we let N(Z) be the hospitals that are collectively assigned

in A to the residents in Z. For each hospital hj ∈ N(Z), and for each

resident rk at the tail of hj’s current list, we delete the pair (rk, hj) and

remove the pair from A if necessary.

Once the outer while loop terminates (as indeed it must, for the same

reason as mentioned above for the inner while loop), we let M ′ be a feasible

matching with respect to A. This comprises M unioned together with all

the bound resident–hospital pairs from A. If M ′ is strongly stable in the

original instance I then the algorithm outputs M ′, otherwise it turns out

that no other matching is strongly stable in I, so the algorithm outputs a

message to this effect.

The following result concerning the correctness and complexity of this

algorithm, and the optimality of a given matching that it produces, is

proved in Refs. [364] and [327, 328].
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Theorem 3.22 ([364,327,328]). For a given instance I of hrt, Algo-

rithm HRT-Strong-Res determines in O(Cm) time whether or not a strongly

stable matching exists, where C is the sum of the hospital capacities and m

is the number of acceptable pairs in I. If such a matching does exist, all pos-

sible executions of the algorithm find one in which every assigned resident

is assigned as favourable a hospital as in any strongly stable matching, and

every unassigned resident is unassigned in every strongly stable matching.

An O(m2) hospital-oriented counterpart of Algorithm HRT-Strong-Res, Al-

gorithm HRT-Strong-Hosp, is described in Ref. [523]. The optimality prop-

erty of the strongly stable matching it returns (providing one exists) is

indicated as follows.

Theorem 3.23 ([523]). For a given instance I of hrt, Algorithm HRT-

Strong-Hosp determines in O(m2) time whether or not a strongly stable

matching exists, where m is the number of acceptable pairs in I. If such

a matching does exist, all possible executions of the algorithm find one in

which every full hospital hj ∈ H has at least as favourable a set of assignees

as it can have in any strongly stable matching, whilst every undersubscribed

hospital is assigned a set of residents that constitutes its assignees in every

strongly stable matching.

O’Malley [470] gave an O(
√
n1m) algorithm10 to find a strongly stable

matching or report that none exists, given an instance I of hrt such that

there is a master list of residents, where n1 is the number of residents and

m is the number of acceptable pairs in I. He did likewise for the case that

I is an instance of hrt with symmetric preferences (i.e., rank(ri, hj) =

rank(hj , ri) for any acceptable resident–hospital pair (ri, hj)).

We have already noted that an instance I of smti need not admit a

strongly stable matching. One strategy for coping with this could be to

find a weakly stable matching in I with the minimum number of blocking

pairs of the strong stability type. However this problem is unlikely to be

solvable in polynomial time: Abraham et al. [27] proved that the problem

of finding a weakly stable matching with the fewest number of blocking

pairs of the strong stability type is not approximable within n1−ε, for any

ε > 0, unless P=NP, where n is the size of I.

10In Ref. [470], the weaker upper bound of O(
√
Cm) was given as the complexity for this

algorithm, where C is the total capacity of the hospitals. The improved upper bound
follows by the remark in Footnote 6 in Chap. 1.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

3.4. Super-stability 159

3.4 Super-stability

In this section we consider super-stability in instances of smt, smti and

hrt. Super-stability is the most stringent of the three stability criteria

that can be defined in the presence of ties. It allows a man and a woman

to form a blocking pair in an instance of smt simply by being indifferent

between one another and their partners. This may be seen as somewhat

contradictory to human nature, given that (in many situations) people tend

towards the status quo unless there is tangible incentive to switch. However,

as we will see, super-stable matchings (when they exist) lend themselves to

a similar range of structural properties to those that hold for stable match-

ings in the context of instances of sm and hr. Consequently, a variety of

problems associated with the computation of types of super-stable match-

ings turn out to be solvable in polynomial time, as we will demonstrate in

this section. These remarks indicate that super-stability in the context of

smti and hrt instances is perhaps the stability criterion that is the closest

counterpart to classical stability in the context of smi and hr instances.

This discussion motivates the study of super-stable matchings from a the-

oretical point of view. However a particular practical situation that gives

additional motivation for this type of stability is discussed in Sec. 3.5.3.

This section is organised along similar lines to Sec. 3.3. We begin by

showing in Sec. 3.4.1 that an smt instance need not admit a super-stable

matching. We also give a necessary and sufficient condition for a matching

to be super-stable in an hrt instance in terms of instances of hr obtained by

tie-breaking. In Sec. 3.4.2 we show that the Rural Hospitals Theorem holds

for super-stable matchings in the context of hrt. We also demonstrate

that the existence of a super-stable matching in an hrt instance I yields

a Rural Hospitals Theorem for weakly stable matchings in I. Section 3.4.3

demonstrates that the set of super-stable matchings in an smt instance

forms a distributive lattice. Then, in Sec. 3.4.4, we describe an O(m)

algorithm for finding a super-stable matching or reporting that none exists,

given an hrt instance where m is the number of acceptable pairs. Finally

in Sec. 3.4.5 we outline some additional results concerning super-stable

matchings.

3.4.1 Existence of a super-stable matching

It is straightforward to construct an instance of smt with no super-stable

matching. For example, an smt instance containing two men and two
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women, each of whose preference list is a tie of length 2, admits no super-

stable matching. Also the smt instance shown in Fig. 3.3 admits no strongly

stable matching, and hence no super-stable matching. Clearly, in an in-

stance of hrt, super-stability is identical to strong stability when preference

lists on one side are strictly ordered.

The following result, stated without proof in Ref. [326], gives an alter-

native necessary and sufficient condition for a matching to be super-stable

in an instance of hrt.

Lemma 3.24 ([326]). Let I be an instance of hrt, and let M be a match-

ing in I. Then M is super-stable in I if and only if M is stable in every

instance I ′ of hr derived from I by breaking the ties.

Proof. Let R = {r1, . . . , rn1
} be the residents in I, and let H =

{h1, . . . , hn2
} be the hospitals in I. Suppose M is a super-stable matching

in I, and let I ′ be an instance of hr obtained from I by breaking the ties in

I in some way. Suppose (ri, hj) blocks M in I ′. Then in I, either ri is unas-

signed in M , or ri prefers hj to M(ri), or ri is indifferent between them.

Similarly in I, either hj is undersubscribed, or hj prefers ri to at least one

member of M(hj), or hj is indifferent between them. Hence (ri, hj) blocks

M in I, a contradiction.

Conversely suppose that M is a matching that is super-stable in every

instance of hr obtained from I by breaking the ties. Suppose that M is

not super-stable in I. Then (ri, hj) blocks M in I. We break the ties in

I to form an hr instance I ′ as follows. If ri is indifferent between hj and

M(ri) in I, break the tie containing those two hospitals in ri’s list so that

ri prefers hj to M(ri) in I ′. Otherwise, break this tie arbitrarily in I ′.

Similarly if hj is indifferent between ri and its worst assignee rk (or one of

its worst assignees, if applicable), then break this tie so that hj prefers ri
to rk. Otherwise, break this tie arbitrarily in I ′. Break all other ties in I

arbitrarily in I ′. Then (ri, hj) blocks M in I ′, a contradiction. �

3.4.2 Rural Hospitals Theorem for super-stable matchings

in hrt

We now state a counterpart of Theorem 3.14 for super-stable matchings in

an instance of hrt.
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Theorem 3.25 ([326]). Let I be a given instance of hrt. Then:

(i) the same residents are assigned in all super-stable matchings;

(ii) each hospital is assigned the same number of residents in all super-

stable matchings;

(iii) any hospital that is undersubscribed in one super-stable matching is

assigned exactly the same set of residents in all super-stable matchings.

In an hrt instance I that admits a super-stable matching, a counterpart of

Theorem 3.25 holds for the set of weakly stable matchings in I, as we now

prove.

Theorem 3.26 ([326]). Let I be a given instance of hrt that admits a

super-stable matching. Then:

(i) the same residents are assigned in all weakly stable matchings;

(ii) each hospital is assigned the same number of residents in all weakly

stable matchings;

(iii) any hospital that is undersubscribed in one weakly stable matching is

assigned exactly the same set of residents in all weakly stable match-

ings.

Proof. Let M be a super-stable matching in I. Then M is weakly stable.

Let M ′ be an arbitrary weakly stable matching in I. Then by Lemma 3.1,

there is some hr instance I ′ obtained from I by breaking ties such that

M ′ is stable in I ′. By Lemma 3.24, M is also stable in I ′. The result then

follows by the Rural Hospitals Theorem (Theorem 1.11) applied to I ′. �

3.4.3 Super-stable matchings form a lattice

Let I be an instance of hrt. Spieker [548] showed that the set of super-

stable matchings in I forms a distributive lattice using the following ar-

gument. Let I denote the set of hr instances that are obtainable from I

by breaking the ties in some way. Lemma 3.24 implies that a matching

M is super-stable in I if and only if M is stable in every member of I.
Hence the set of super-stable matchings in I is precisely ∩I′∈ISI′ , where

SI′ denotes the set of stable matchings in the hr instance I ′. But SI′

forms a distributive lattice (under the dominance partial order as defined

in Definition 1.12) [261, Sec. 1.6.5]. Spieker [548] stated that the intersec-

tion of these distributive lattices is also a distributive lattice (or is empty),
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and therefore it follows that the set of super-stable matchings in I forms a

distributive lattice.

In fact Spieker stated that any intersection of distributive lattices is

either a distributive lattice or is empty. However it is not at all clear what

is meant by “intersection” in this context. In general, let P1 = (S1,�1)

and P2 = (S2,�2) be two partially ordered sets. Define the intersection of

P1 and P2 to be the pair P = (S,�) where S = S1 ∩ S2 and �=�1 ∩ �2.

Clearly P1∩P2 is a partially ordered set. However if P1 and P2 are lattices,

it certainly need not be the case in general that P is a lattice. This begs

the question as to what definition of “intersection” Spieker had in mind.

Moreover, it may be necessary to invoke further assumptions on properties

that are satisfied by the lattices that are being intersected before the overall

claim is true. These properties may be satisfied by the individual lattices

(SI′ ,�), but again it is unclear as to what assumptions are required.

In Ref. [415], this author gave a brief overview of Spieker’s method for

showing that super-stable matchings form a distributive lattice without

noting the issue discussed in the previous paragraph. However one of the

main contributions of Ref. [415] was an alternative proof of Spieker’s result

which is not based on the intersection of lattices. We feel that our alter-

native method gives additional insight into the underlying structure of the

set of super-stable matchings, and we now outline it here. As in Sec. 3.3.3,

for brevity we describe the lattice for smt, however the structural results of

this section may be extended to hrt in a manner analogous to the extension

of the lattice results for stable matchings in sm to the hr case [261, Sec.

1.6.5].

We begin with the following result, which demonstrates that if an agent

has different partners in two super-stable matchings, then he/she cannot

be indifferent between them.

Lemma 3.27 ([415]). Let I be an instance of smt, and let M,M ′ be two

super-stable matchings in I. Suppose that, for any agent p in I, (p, q) ∈ M

and (p, q′) ∈ M ′, where p is indifferent between q and q′. Then q = q′.

Let S be the set of super-stable matchings for a given smt instance

I, and define the dominance partial order � on S as in Definition 3.18.

The insight into the structure of super-stable matchings in an smt instance

provided by Lemma 3.27 allows us to follow an approach along the lines of

that employed in Sec. 3.3.3, in order to show that (S,�) forms a distributive

lattice. We begin with the analogue of Theorem 3.16 for super-stability.
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Theorem 3.28 ([415]). Let I be an instance of smt, and let M,M ′ be

two super-stable matchings in I. Suppose that (mi, wj) ∈ M\M ′. Then

one of mi, wj prefers M to M ′, and the other prefers M ′ to M .

The following lemmas provide the foundations for the definitions of the

“meet” and “join” operations for two super-stable matchings in I.

Lemma 3.29 ([415]). Let I be an instance of smt, and let M,M ′ be two

super-stable matchings in I. Let M∗ be a set of man–woman pairs defined

by giving each man the better of his partners in M and M ′. Then M∗ is a

super-stable matching in I.

Lemma 3.30 ([415]). Let I be an instance of smt, and let M,M ′ be two

super-stable matchings in I. Let M∗ be a set of man–woman pairs defined

by giving each man the poorer of his partners in M and M ′. Then M∗ is

a super-stable matching in I.

We denote by M ∧M ′ and M ∨M ′ the super-stable matchings defined by

Lemmas 3.29 and 3.30 respectively. We are now in a position to state our

main result of this section.

Theorem 3.31 ([415]). Let I be an instance of smt, and let S be the

set of super-stable matchings in I. Then (S,�) forms a distributive lattice,

with M ∧M ′ representing the meet of M and M ′, and M ∨M ′ the join, for

two super-stable matchings M,M ′ ∈ S, where � is the dominance partial

order on S as defined in Definition 3.18.

3.4.4 Finding a super-stable matching

The problem of finding a super-stable matching, or reporting that none

exists, was shown to be solvable in O(n2) time, given an instance I of

smt of size n [308]. This algorithm was extended to the smti case with

the same time complexity [414]. In this subsection we present an O(m)

algorithm for the analogous problem, given an hrt instance I, where m

denotes the number of acceptable pairs in I. As in Sec. 3.3.4, the algorithm

for super-stability is resident-oriented.

For a given instance I of hrt, Algorithm HRT-Super-Res, shown in

Algorithm 3.4, finds a super-stable matching or reports that none exists.

We will describe informally an execution of this algorithm. This description

contains the terms head, tail and delete the pair, whose definitions are

unchanged from Sec. 3.3.4.
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Algorithm 3.4 Algorithm HRT-Super-Res [326]

Require: hrt instance I
Ensure: return a super-stable matching in I , or “no super-stable matching ex-

ists”
1: M := ∅;
2: while some resident ri ∈ R is unassigned and has a non-empty list do

3: for each hospital hj at the head of ri’s list do

4: {ri applies to hj}
5: M := M ∪ {(ri, hj)};
6: if hj is oversubscribed then

7: for each resident rk at the tail of hj ’s list do

8: M := M\{(rk, hj)};
9: delete the pair (rk, hj);

10: end for

11: end if

12: if hj is full then
13: rk := worst resident in M(hj) according to hj ’s list; {any, if > 1}
14: for each strict successor rl of rk on hj ’s list do

15: delete the pair (rl, hj);
16: end for

17: end if

18: end for

19: end while

20: if M is a super-stable matching in I then

21: return M ;
22: else

23: return “no super-stable matching exists”;
24: end if

Algorithm HRT-Super-Res maintains an assignment M that is initially

empty. The algorithm involves a sequence of apply operations from the

residents to the hospitals, in the spirit of the RGS algorithm for hr. A res-

ident applies simultaneously to all hospitals at the head of her list, and all

applications are provisionally accepted. If a hospital hj becomes oversub-

scribed, it turns out that none of hj ’s worst-placed assignees (there must be

more than one), nor any residents tied with these assignees in hj ’s list, can

be a super-stable partner of hj — the pair (ri, hj) is deleted and removed

from M if necessary, for any such resident ri. If a hospital hj is full, then

no resident inferior to hj ’s worst-placed assignee(s) can be a super-stable

partner of hj — again the pair (ri, hj) is deleted for any such resident ri.

The sequence of apply operations terminates once every resident either is

assigned to a hospital or has an empty list. At this point if M is super-
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stable in the original instance I then the algorithm outputs M , otherwise

it turns out that no other matching is super-stable in I, so the algorithm

outputs a message to this effect.

We now summarise the correctness and complexity of the algorithm.

Theorem 3.32 ([326]). For a given instance I of hrt, Algorithm HRT-

Super-Res determines, in O(m) time, whether or not a super-stable match-

ing exists, where m is the number of acceptable pairs in I. If such a match-

ing does exist, all possible executions of the algorithm find one in which

every assigned resident has the best partner that she has in any super-stable

matching in I, and every unassigned resident is unassigned in all super-

stable matchings in I.

A hospital-oriented counterpart of Algorithm HRT-Super-Res, Algo-

rithm HRT-Super-Hosp, appears in Ref. [326]. The optimality property

of the super-stable matching it returns (providing one exists) is indicated

as follows.

Theorem 3.33 ([326]). For a given instance I of hrt, Algorithm HRT-

Super-Hosp determines in O(m) time whether or not a super-stable match-

ing exists, where m is the number of acceptable pairs in I. If such a match-

ing does exist, all possible executions of the algorithm find one in which

every full hospital hj ∈ H is assigned its cj best super-stable partners,

whilst every undersubscribed hospital hj is assigned a set of residents that

constitutes its assignees in every super-stable matching.

O’Malley [470] gave a simpler O(m) algorithm to find a super-stable

matching or report that none exists, given an instance I of hrt such that

there is a master list of residents, where m is the number of acceptable

pairs in I. He did likewise for the case that I is an instance of hrt with

symmetric preferences.

3.4.5 Optimal super-stable matchings

In Sec. 3.4.3 we described the lattice structure for super-stable matchings

in the context of hrt. Given this structure, it is perhaps not surprising

that a range of additional problems concerned with computing super-stable

matchings in the smti context turn out to be solvable in polynomial time,

as we demonstrate in this subsection.

Let I be an instance of smti. We firstly consider the problem of generat-

ing a “succinct certificate” for the unsolvability of I. Clearly, if I admits a
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super-stable matching M , M itself is a “certificate” of this fact, and may be

used to verify, in O(m) time (by checking for the absence of blocking pairs)

that I does indeed admit a super-stable matching, where m is the number

of acceptable pairs. However if I does not, then it is less obvious as to what

is meant by a “certificate” of this property. Certainly, one can run Algo-

rithm HRT-Super-Res on I and check that it terminates with an assignment

M that is not a super-stable matching in I. But it is arguable that this is

not a “succinct” certificate of the non-existence of a super-stable matching

in I. Instead, one may use the fact that there is a 1–1 correspondence be-

tween the super-stable matchings in I and the satisfying truth assignments

of a suitably-constructed 2-sat instance J [216]. It is well known that a

succinct certificate of the unsolvability of a 2-sat instance J is a cycle in

the implication digraph underlying J . Given that J can be constructed

from I in O(m) time, and J requires O(m) space, it follows that there is a

succinct certificate for the unsolvability of I that can be generated in O(m)

time, and represented using O(m) space.

Additional polynomial-time solvable problems are as follows. A mini-

mum regret super-stable matching in I can be found inO(m) time, whilst an

egalitarian super-stable matching in I can be constructed in O(m1.5) time

[216]. Here, we are implicitly using the Rural Hospitals Theorem (Theorem

3.25) to discard the unassigned men and women, and then minimising the

maximum rank of an agent’s partner (in the case of the minimum regret

problem) or minimising the sum of the ranks of the agents’ partners (in the

case of the egalitarian problem) among the assigned men and women that

remain.

Furthermore all the super-stable pairs in I can be found in O(m) time,

whilst there is an algorithm to list all the super-stable matchings in I:

the first such matching can be output in O(m) time, and each subsequent

super-stable matching can be output in O(n) time [216].

It is likely that the results in this section can be extended to the hrt

case, but explicit extensions to this case have yet to be formulated in

the literature.

3.5 Other results

In this section we outline some additional results involving stable matching

problems with indifference.
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3.5.1 Semi–strong stability

“Semi–strong stability” is a version of stability that, in some sense, lies “in

between” weak stability and strong stability. Here, we stipulate which set

of agents is allowed to express indifference. For example, in the context

of an smt instance I, a matching M is woman-strongly stable if there is

no man–woman pair (mi, wj) such that mi prefers wj to M(mi), and wj

prefers mi to M(wj) or is indifferent between them. Clearly man–strong

stability can be defined similarly. It turns out that, in contrast to the case

for strong stability, the problem of deciding whether I admits a woman-

strongly stable matching is NP-complete, as we now demonstrate.

Theorem 3.34. The problem of deciding whether an smt instance admits

a woman-strongly stable matching is NP-complete.

Proof. Clearly this problem belongs to NP. To show NP-hardness, we

give a reduction from the restriction of com smti in which ties appear

on the men’s side only, which is NP-complete [419]. Let I be an instance

of this problem in which U = {m1, . . . ,mn} is the set of men and W =

{w1, . . . , wn} is the set of women. Let Pi denote the preference list of mi,

for each mi ∈ U , and let Qj denote the preference list of wj , for each

wj ∈ W . We form an instance I ′ of smt in which U ∪ {mn+1} is the set of

men, for some new man mn+1, and W ∪ {wn+1} is the set of women, for

some new woman wn+1. The preference lists of the men and women in I ′

are as follows:

mi : Pi wn+1 [W\Pi] (1 ≤ i ≤ n)

mn+1 : wn+1 [W ]

wj : Qj [(U\Qj) ∪ {mn+1}] (1 ≤ j ≤ n)

wn+1 : (U ∪ {mn+1})

In a given agent’s preference list, [S] denotes all members of S listed in

some arbitrary strict order where the symbol appears. We abuse notation

somewhat and use Pi and Qj to denote the members of the preference

lists as well as the preference lists themselves. We claim that I admits a

complete weakly stable matching if and only if I ′ admits a woman-strongly

stable matching.

For, suppose that M is a complete weakly stable matching in I. It is

not difficult to verify that M ∪ {(mn+1, wn+1)} is a woman-strongly stable

matching in I ′.
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Conversely suppose that M ′ is a woman-strongly stable matching in I.

If (mn+1, wn+1) /∈ M ′ then clearly (mn+1, wn+1) blocks M ′. Moreover if

M ′(mi) /∈ Pi for some mi ∈ U then (mi, wn+1) blocks M
′ in I ′, a contra-

diction. Hence M = M ′\{(mn+1, wn+1)} is a complete matching in I. It

is straightforward to verify that M is weakly stable in I. �

Clearly the definition of woman–strong stability may be extended to

the smti case. If ties belong to the men’s side only, clearly woman–strong

stability is equivalent to weak stability. Therefore given an smti instance I,

woman-strongly stable matchings can be of different sizes (recall Fig. 3.2),

and the problem of finding a maximum woman-strongly stable matching

in I is NP-hard (this follows since max smti is NP-hard even if the ties

belong to the men’s lists only [419]).

3.5.2 Many–many strongly stable matchings

Malhotra [413] studied strongly stable matchings in the multiple partner

stable marriage problem with ties, a many–many generalisation of smti

(see Sec. 5.4). He showed that the set of strongly stable matchings forms a

lattice, given an instance of this problem. He also gave a polynomial-time

algorithm for finding a strongly stable matching or reporting that none

exists, for this problem context. However Chen and Ghosh [139] showed

that this algorithm is, in fact, incorrect. They gave a new algorithm which

uses the concept of a critical subgraph (extending the concept of the critical

set from Ref. [328]) with complexity O(m3n), where n is the number of

agents and m is the number of acceptable pairs of agents. The algorithm

extends that in Ref. [328] for hrt, but does not use the concept of level-

maximal matchings from Ref. [364]; thus there could be scope for improving

the algorithm’s complexity.

3.5.3 Partially-ordered preference lists

In most practical applications where preference lists are not strictly ordered,

indifference takes the form of ties in the preference lists. However, in some

cases, indifference is not expressible in terms of preference lists involving

ties. One example context is where there is incomplete information about

the preference lists. Suppose that, in a Stable Marriage instance, we wish

to find a stable matching (in the classical sense), but for some or all of the

agents we have only partial information regarding the true preferences. In

general, each preference “list” may be expressible only as a partial order,
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and the particular linear extension that represents an agent’s true prefer-

ences is unknown. It is straightforward to show that Lemma 3.24 extends

to the hrp case. It follows that a super-stable matching is one that is stable

no matter which linear extensions of the various preference posets represent

the true preferences.

All the other results from Sec. 3.4 concerning super-stability carry

over to hrp, namely the equivalent condition for super-stability (Lemma

3.24), the Rural Hospitals Theorem (Theorem 3.25), the lattice structure

for super-stable matchings (Theorem 3.31), and Algorithm HRT-Super-Res

(Theorem 3.32). In the case of the statement of Lemma 3.24, we should

replace “breaking the ties” with “forming a linear extension of each partial

order”. Also in the case of Algorithm HRT-Super-Res, the description of

the algorithm should be amended so that the head of a resident ri’s list is

the set of source nodes in the Hasse diagram representing ≺ri , the tail of a

hospital hj ’s list is the set of sink nodes in the Hasse diagram representing

≺hj
, and a worst resident in M(hj) is any resident in the tail of hj ’s list

who is assigned to hj in M .

Concerning strongly stable and weakly stable matchings in hrp, it turns

out that the lattice structure that holds for strongly stable matchings in an

smt instance (as established in Sec. 3.3.3) does not carry over to smp: there

is an instance of smp [415, Sec. 3] that contains no man-optimal strongly

stable matching. Moreover the problem of deciding whether an smp in-

stance admits a strongly stable matching is NP-complete [328]. Clearly the

hardness results described in Sec. 3.2 for smt under weak stability carry

over to smp by restriction.

Fishburn [207] described some further practical situations that give rise

to preference structures involving indifference where the structures are not

expressible in terms of preference lists involving ties.

Rastegari et al. [488] studied instances of smti from the point of view

of incomplete information. Here, the men and women in a given instance I

were termed applicants and employers respectively. Each agent ai has, in

addition their preference list P (ai) in I (possibly involving ties), a linear

order L(ai), obtained by breaking the ties in P (ai), representing ai’s true

strict underlying preference order over the members of the opposite side.

This linear order is initially unknown to ai, and ai learns information about

it through carrying out interviews.

Each interview involving a pair of agents ai and aj can be assumed to

reveal information for both ai and aj about one another — we can think

of the outcome as being a unique score assigned by ai to aj and vice versa.
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Thus if ai has a tie T of length k in his/her preference list, k interviews

are necessary and sufficient in order to produce a strict ranking over the

members of T .

However, interviews are costly and we wish to minimise their use. Raste-

gari et al. [488] studied the problem of scheduling the minimum number of

interviews in I in order to produce an smti instance I ′, obtained from I

by breaking some of the ties (as a consequence of the information learned

through the interviews), that admits a super-stable matching that is the

employer-optimal stable matching no matter which instance I ′′ of smi, ob-

tained from I ′ by breaking the remaining ties, is consistent with the true

underlying linear orders. (Note that such a schedule always exists: by car-

rying out all m possible interviews between pairs of agents, where m is the

number of acceptable pairs in I, we obtain precisely the smi instance I ′′

that is consistent with the true underlying linear orders, which of course

admits a unique employer-optimal stable matching.)

The authors showed that, in general, finding such a minimum schedule

of interviews is NP-hard, though solvable in polynomial time if all of the

applicants have the same preference list in I initially (though their linear

orders need not be the same).

3.6 Conclusions and open problems

The quantity of results surveyed in this chapter reflects the steadily ex-

panding body of literature concerning bipartite stable matching problems

with indifference. These results indicate that, broadly speaking, whilst a

weakly stable matching is guaranteed to exist and can be found in polyno-

mial time, placing any additional constraints on the nature of the weakly

stable matching required is likely to yield an NP-hard problem. On the

other hand, most problems concerned with finding types of strongly stable

and/or super-stable matchings turn out to be solvable in polynomial time,

but the drawback here is that each type of matching need not exist. We

conclude this chapter with a selection of open problems.

• The approximability results for max smti and max hrt presented in

Sec. 3.2.6.1 leave open the question as to whether any improved upper or

lower bounds can be found, perhaps for special cases. For example the

case of max hrt where the hospitals’ preference lists are derived from a

single master list of residents is a restriction that is particularly relevant

in practice, and may turn out to be more amenable to approximation

than the general problem.
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• As noted in Sec. 3.2.7, it remains open as to whether there is an efficient

algorithm for generating all the weakly stable matchings in a given smt

instance.

• As observed in Sec. 3.2.2, an instance of smti need not admit a man-

optimal weakly stable matching, even if there are no ties in the men’s lists.

The complexity of the problem of finding a man-optimal weakly stable

matching, or reporting that none exists, given an smti instance, is open,

though we conjecture that the problem is NP-hard. A related decision

problem is to determine whether a given weakly stable matchingM in I is

man-optimal. Gelain et al. [245, 249] gave a polynomial-time algorithm

that finds a man-optimal weakly stable matching in I, or reports “I

don’t know” (thus the algorithm does not guarantee to terminate with

the correct answer).

• The complexity of the problem of finding a sex-equal weakly stable

matching does not appear to have been investigated in the context of

smt where the preference lists of one or both sexes are derived from one

or two master lists.

• It is open as to whether the results of Sec. 3.4.5 can be extended to

the case of smti under strong stability. (Recall that the problem of de-

ciding whether a given smp instance admits a strongly stable matching

is NP-complete.) That is, it is of interest to investigate the complex-

ity of each of the problems of finding a “succinct certificate” for the

non-existence of a strongly stable matching, a minimum regret strongly

stable matching, an egalitarian strongly stable matching, all strongly

stable pairs, and all strongly stable matchings, given an instance of

smt. For the latter problem, partial results concerning the generation of

strongly stable matchings within a single equivalence class are contained

in Ref. [415].

We note that Feder [201, p.148] conjectures that, for an instance I of

smt, the problem of deciding whether there is a strongly stable matching

other than the man-optimal and woman-optimal strongly stable match-

ings is NP-complete. However given the observations of Sec. 3.3.3, Feder’s

conjecture would be more appropriately stated as follows: is there a

strongly stable matching M in I, such that M /∈ [Ma] and M /∈ [Mz],

where [Ma] and [Mz] are the equivalence classes corresponding to a man-

optimal and a woman-optimal strongly matching in I, respectively? In-

deed, it would seem likely that a suitable definition of a rotation in this

context could be used to exploit the lattice structure present for strongly

stable matchings in I in order to disprove the conjecture.
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Chapter 4

The Stable Roommates problem

4.1 Introduction

As noted in Chap. 1, the Stable Roommates problem is a non-bipartite

generalisation of sm, yet prior to 1989 it had been something of a “poor

cousin” of its more prominent special case. This changed with the publi-

cation of Gusfield and Irving’s book [261], in which a whole chapter was

devoted to sr, gathering together work in Refs. [306,307,260], in addition to

contributing many new key results. As already noted in Chap. 2, Gusfield

and Irving concluded with an appendix containing 12 open problems (or

more accurately, a range of open problems organised into 12 subsections).

Some of these concern sr, and in Sec. 4.2, we update the reader on what

is now known, and what is still open, regarding these problems.

Considering more generally the progress that has been made on sr after

1989, a key landmark is the work of Tan (and Hsueh) [556–559] on stable

partitions. This structure, which we define formally in Sec. 4.3.1, is present

in every sr instance, and its existence is strong compensation for the fact

that a stable matching need not exist. In Sec. 4.3, we survey the key results

relating to stable partitions, including the Tan–Hsueh algorithm for finding

a stable partition.

Another important development concerning the structure of stable

matchings in the sr context in recent years has been the identification

of a new meet semilattice for sr stable matchings. Cheng and Lin [146] es-

tablished this structure by considering so-called mirror posets and median

graphs, arguing that the new meet semilattice gives rise to a more natural

description of sr stable matchings than the earlier structure due to Gusfield

and Irving [261]. We describe these results in Sec. 4.4.

Indifference in the context of instances of smi and hr was surveyed in

Chap. 3. Another significant development concerning sr was the study

173
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of variants of this problem involving forms of indifference. In some cases,

results from smti have generalisations to the case of sr with ties that are

non-trivial, but perhaps not surprising. However there are some exceptions:

for example, whilst the problem of finding a weakly stable matching (of

any size) is polynomial-time solvable in the smti case, the corresponding

problem is NP-hard in the Stable Roommates case. We survey known

results corresponding to sr with indifference in Sec. 4.5.

The possible unsolvability of an sr instance motivates methods for find-

ing matchings that are “as stable as possible”. Several possible definitions

of such matchings are given in Secs. 4.3.4 and 4.3.6; all relate to stable

partitions. Another possible interpretation of this concept involves finding

matchings with the minimum number of blocking pairs, and is studied in

Sec. 4.6.

An important special case of sr arises when there is a global ranking of

the edges in the underlying graph, and the agents’ preference lists respect

this ranking function. We describe results concerning this problem variant

in Sec. 4.7.

In Sec. 4.8, we turn our attention to a range of generalisations of sr,

including variants where the underlying graph may be capacitated and/or

involve parallel edges, some edges may be forbidden, partnerships may be

non-integral in size, preference relations may be in the form of choice func-

tions, and agents may form coalitions of arbitrary size.

Finally, in Sec. 4.9 we give some concluding remarks and open problems

corresponding to sr and its variants.

4.2 Updates to open problems 8–12 from Gusfield & Irving

Problems 8–12 of Gusfield and Irving’s appendix [261] specifically relate to

sr, and we summarise the work that has been done towards solving each

of these problems in this section. In some cases the problem in question

has been completely solved, whilst in other cases only partial answers have

been given so far.

4.2.1 8: Solvable Roommates Instances

Let pn denote the probability that a random instance of sr with n agents

(where n is even) is solvable. Open problem 8 focused on (i) whether pn
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Table 4.1 Values of qIn for various values of n

n qIn Reference

10 0.89 [534]

100 0.64 [534]

500 0.45 [534]

1000 0.38 [448]

5000 0.26 [448]

10000 0.23 [448]

20000 0.18 [448]

is a strictly decreasing function of n, (ii) whether limn→∞ pn = 0, and (iii)

finding upper and lower bounds for pn.

Whilst exact values for p2, p4 and p6 can be calculated, namely p2 = 1,

p4 = 26
27 ≈ 0.963 [261] and p6 = 181431847

194400000 ≈ 0.933 [448], for each n > 6

the number of instances (namely ((n − 1)!)n−1 is too large for all to be

generated and tested for solvability systematically. Instead, computational

simulations can estimate the value of pn by randomly generating a (large)

sample, say 10000, of sr instances of size n and calculating the proportion

that are observed to be solvable.

Empirical results from Refs. [534] and [448] suggest that, as n increases,

pn decreases steeply up to around the n = 1000 mark, and then begins to

decrease more slowly thereafter. In particular, Sng [534] created a set In
of 10000 randomly generated instances of sr, each of size n, for various

values of n including n ∈ {10, 100, 500}. For each such set In, he computed

qIn
, the proportion of instances of In that were observed to be solvable.

(In fact his simulations handled instances of size up to 8000 in intervals of

1000, but for 1000 ≤ n ≤ 8000, the number of generated instances was only

5000.) Additionally, Mertens generated families of 10000 instances In for

a range of values of n including n ∈ {1000, 5000, 10000, 20000}. Again, he
computed qIn

for each such set. The values of qIn
for the aforementioned

values of n are given in Table 4.1.

Based on his computed values of qIn
, Mertens [448] conjectured that,

asymptotically, pn ≈ e
√

2/πn− 1
4 .

Pittel [481] proved that pn ≥ (1 + o(1))(2e
3
2 )/

√
πn, whilst Pittel and

Irving [482] showed that limn→∞ pn ≤ √
e/2 ≈ 0.8244. The empirical

evidence therefore suggests that this asymptotic upper bound is not likely

to be particularly tight.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

176 The Stable Roommates problem

Now let Sn be a random variable that denotes the number of stable

matchings for a random sr instance with n agents. Pittel [481] also showed

that limn→∞ E(Sn) =
√
e.

4.2.2 9: Roommates to Marriage

This problem centred around the question of whether there is a polynomial-

time reduction from a solvable sr instance I to an sm instance J such that

there is a 1–1 correspondence between the sets of stable matchings in I and

J . This problem is still open (a solution was proposed by Gusfield [258],

but was found by Irving to be erroneous).

However Dean and Munshi [162] provided a partial answer, along the

following lines. Gusfield and Irving suggested turning each agent in I into

two persons (one male and one female) in J , whose preference lists are

related to that of the original agent in I. Following this suggestion, Dean

and Munshi transformed each agent ai in I into a man mi and a woman

wi in J . The preference list of mi (respectively wi) in J is identical to

that of ai except that each occurrence of aj on ai’s list is replaced by wj

(respectively mj). Hence in fact J is an instance of smi; moreover, Dean

and Munshi referred to this as a symmetric smi instance. They defined a

stable matching M in J to be symmetric if (mi, wj) ∈ M if and only if

(mj , wi) ∈ M . Clearly there is a 1–1 correspondence between the stable

matchings in I and the symmetric stable matchings in J . The authors gave

a polynomial-time algorithm for finding a symmetric stable matching in J

by characterising the set of rotations to be eliminated in order to arrive at

such a matching. In fact, this reduction holds for the more general Stable

Allocation problem (defined in Sec. 4.8.6).

An alternative approach that could still yield some insight into potential

structural correspondences between sr and sm is to reduce an arbitrary (i.e.,

not necessarily solvable) instance of sr to an instance of some variant Π of

sm, where it is not the case that an arbitrary instance of Π is guaranteed

to admit a stable matching. Π, for example, could be smt under super-

stability, or even com smti under weak stability. A reduction along these

lines, due to Manlove and Abraham (see Ref. [14]), transforms from sr to

the problem of deciding whether a complete weakly stable matching exists,

given an instance of the variant of smi in which the preference lists are

acyclic relations.

We conclude by remarking that a paper of Hsueh [283] aimed to unify the

structures of sr and sm by transforming an sr instance I into an sm instance
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J according to Gusfield and Irving’s suggestion as described above. The

author then inferred structural results about I from those of J . Also, for

each of sr and sm, Hsueh gave a representation of the stable matchings for a

given instance in terms of a so-called Faigle geometry. Whilst Hsueh’s work

contributes some interesting structural correspondences between sr and sm,

it does not solve the basic question that this subsection is concerned with.

4.2.3 10: Succinct Certificates

Part of this problem focused on whether there is a “succinct certificate”

for the unsolvability of a given sr instance. This problem was solved by

Tan [557], who demonstrated that an arbitrary instance of sr with n agents

admits a structure called a stable partition, which can be found in O(n2)

time. From this, it is a straightforward matter to check (in O(n) time)

whether I is solvable. Stable partitions are described in more detail in

Sec. 4.3.

The stable partition structure provides a natural characterisation of the

solvability or otherwise of a given sr instance; the question as to whether

such a characterisation could be found was posed in Sec. 10.1 of the Ap-

pendix of Ref. [261]. In Sec. 10.2 of the Appendix of Ref. [261], the authors

asked whether, given the lower bound results for sm [464] (see Sec. 2.10.10),

one can prove an Ω(n2) lower bound for the problem of determining whether

a given sr instance I with n agents is solvable (note that here we are simply

required to decide the solvability or otherwise of I, and not to find a stable

matching if I is indeed solvable). As far as we are aware, this problem is

still open. However Feder [202] showed that the problem of finding a stable

matching in I or reporting that none exists is logspace reducible to the

problem of deciding whether I admits a stable matching, and vice versa,

showing that the two problems have the same parallel complexity.

4.2.4 11: Algorithmic Improvements

The part of this problem corresponding to sr concerned whether (i) all

rotations for a given sri instance I can be found in O(m) time, and (ii) the

stable matchings in I can be listed in O(n) time per matching (after some

polynomial-time initial pre-processing phase), as in the sm case, where n is

the number of agents and m is the number of acceptable pairs in I.

Results of Feder [202,203] impacted on (i) and (ii) in the following way.

For (i), Feder was able to improve the time complexity of the previous algo-

rithm (referred to in Part (ii) Theorem 1.24) from O(nm logn) to O(nm).
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For (ii), Feder was able to answer this question in the affirmative, requiring

O(m) pre-processing time. Recall that the previous algorithm (referred to

in Part (iii) of Theorem 1.24) listed each stable matching in O(m) time per

matching following O(nm logn) pre-processing time.

In order to describe these results, we begin by extending our definition

of the rotation poset as given in Sec. 1.4.4. The so-called extended rotation

poset R∗
I for I contains all the rotations together with the syntactic duals

of the singular rotations, and restricting this structure by excluding these

latter elements gives the actual rotation poset. We can find, in O(m) time,

a directed graph RI that represents R∗
I , in the sense that the transitive

closure of RI is isomorphic to R∗
I (see Sec. 4.4.1 of Ref. [261]). Digraph RI

is constructed by scanning each preference list in turn, adding a sequence

of edges derived from the rotations represented in that list (see Sec. 4.4.1

of Ref. [261]). As a consequence, the explicit width of RI is at most n,

meaning that we can find a set of at most n vertex–disjoint paths in RI

that cover all the vertices — one such path arises from each preference list.

Digraph RI turns out to be equivalent to the implication digraph of an

instance J of acyclic 2-sat [261, pp.194–195]. In J , each variable and its

negation correspond to a rotation and its syntactic dual. The clauses of J

are of the form (ρ ∨ σ̄) for any pair of rotations such that (ρ, σ) is an edge

in RI (which implies that ρ precedes σ in R∗
I). Because a singular rotation

precedes its syntactic dual in R∗
I , the singular rotations are precisely the

trivial variables in J — i.e., those that are true in every satisfying truth

assignment. Hence the true variables in any satisfying truth assignment for

J correspond to a complete closed set of rotations in I. The converse is

also true, so by Theorem 1.23 there is a 1–1 correspondence between the

satisfying truth assignments for J and the stable matchings in I. Note that

J has O(m) variables and clauses, and can be constructed from I in O(m)

time.

The implication digraph D of J has a vertex for each literal and a

directed edge (σ, ρ) if (ρ ∨ σ̄) is a clause in J . So, in fact, D is structurally

identical to RI , except that the direction of every edge is reversed.

Feder [203] established that we can construct in O(nm) time a repre-

sentation of the transitive closure D∗ of D, which enables us to test in O(1)

time whether a given edge is inD∗ or not. This allows the singular rotations

to be identified, since a rotation ρ is singular if and only if (ρ̄, ρ) ∈ D∗. In

turn, this allows the stable pairs of I to be found, since these are precisely

the (disjoint) union of the fixed pairs and the pairs that are in some non-

singular rotation [261, Lemma 4.4.1]. Furthermore, Feder [203] showed that
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the satisfying truth assignments of J , and hence the stable matchings of I,

may be listed efficiently. The following result summarises the consequences

that arise from the discussion so far.

Theorem 4.1 ([203]). Let I be an instance of sri with n agents, where

m is the number of acceptable pairs in I, and let J be the instance of 2-sat

as described above. Then:

(i) the stable pairs for I can be found in O(nm) time;

(ii) the rotations for I can be found and determined as singular or non-

singular in O(nm) time;

(iii) the satisfying truth assignments for J , and therefore the stable match-

ings for I, can be listed in O(n) time per solution, after O(m) pre-

processing time.

The time complexities indicated in Parts (i), (ii) and (iii) of Theorem 4.1

therefore improve on the corresponding time complexities given by Theorem

1.24.

Feder [203, p.317] remarked that the problem of computing all sta-

ble pairs for a given sri instance has an inherent dependency on bi-

partite matching and transitive closure, and hence an O(m) algorithm

for this problem may be unlikely to exist. Given that a rotation ρ =

(ai0 , aj0), . . . , (air−1
, ajr−1

) is singular if and only if no {aik , ajk} is a stable

pair (0 ≤ k ≤ r− 1) [261, Lemma 4.4.1], Feder’s remark also applies to the

problem of computing all rotations.

4.2.5 12: Optimal Roommates

Gusfield and Irving asked whether the problem of finding a minimum weight

stable matching, given an instance of sr, is solvable in polynomial time.

Feder [202] gave an answer in the negative: he showed that, in fact, the

problem of finding an egalitarian stable matching, given an instance of sr,

is NP-hard, and hence finding a minimum weight stable matching is also

NP-hard. However the latter problem is approximable within a factor of

2 [263, 202, 203, 565, 162]. Gusfield and Pitt [263] gave a 2-approximation

algorithm for the problem of finding a minimum weight stable matching,

given an sri instance I, running in O(m2) time, where m is the number

of acceptable pairs in I. Feder [202, 203] improved the running time to

O(m log(n2/m)), where n is the number of agents in I. Moreover he proved

that this problem is approximable within a constant factor of c if and only if
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the problem of finding a minimum vertex cover in a graphG is approximable

within c. It is well known that, at present, the best known value of c for

the latter problem is 2 — this classical result is due to Gavril [243] (cited

in Ref. [241]). Moreover, the approximability of this problem within a

constant factor less than 2 would imply the truth of the Unique Games

Conjecture [377].

4.2.6 12.1: Linear Programming for Roommates

Gusfield and Irving asked whether there is an efficiently obtainable linear

programming (LP) formulation of sr, similar to that obtainable for sm

[576, 520, 510] (see Sec. 2.4).

Abeledo and Rothblum [11] solved this problem by proving that, in the

sri context, the extreme points of the polytope of solutions to the system

of linear inequalities formulated by Rothblum [520] for smi are half-integral

and give rise to so-called stable half-matchings (see Sec. 4.3.5), and the inte-

gral extreme points of this polytope give rise to stable matchings. Abeledo

and Rothblum gave some structural results for stable half-matchings, ex-

tending some of those obtained by Roth et al. [510] for fractional stable

matchings in the smi case (see Sec. 2.4), including a proof for sri that

the median choice (see Theorem 1.20) between three stable half-matchings

gives rise to a stable half-matching.

Abeledo and Blum [9] showed that, for a given sri instance I, a stable

matching, or the non-existence of one, can be determined after solving

a series of at most 2m + 1 linear programs, where m is the number of

acceptable pairs in I. Again, these linear programs are based on the linear

inequalities given by Rothblum [520].

Teo and Sethuraman [565] gave a new LP formulation of sr, which has

the property that a feasible solution exists if and only if the corresponding

sr instance is solvable. This property is not satisfied by the earlier LP

formulation of Abeledo and Rothblum [11]: in that case a given system of

linear inequalities could admit a feasible (half-integral) solution even if the

corresponding sr instance is unsolvable. Teo and Sethuraman [565] used

their LP formulation of sr to derive the structural property established

by Theorem 4.16 (see Sec. 4.4). The authors also showed how their LP

formulation gives rise to a 2-approximation algorithm for the problem of

finding a minimum weight stable matching, given an instance of sr, and in a

related paper [564], they showed that their heuristic performs impressively

on a range of sr instances of a particular set of sizes.
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Given the NP-hardness of finding an egalitarian stable matching in the

sr context, as mentioned above, it follows that, in constrast to the case

for smi [576,520,510], the LP formulations of sri mentioned in this section

cannot give rise to an efficient characterisation of minimum weight stable

matchings in the context of an sri instance unless P=NP. However Teo and

Sethuraman [566] proposed a further LP formulation for sr which, with the

use of a cutting-plane heuristic, is shown to provide solutions that are on

average within 6% of the weight of a minimum weight stable matching for

a family of randomly generated instances, and always within a factor of 2

from optimal in the worst case for an arbitrary instance.

4.3 Stable partitions

4.3.1 Introduction

As indicated in Sec. 1.4.2, an sr instance may not admit a stable matching.

Tan [557] defined an important structure, called a stable partition, with a

range of useful properties that is, however, present in every instance of sri.

For a solvable sri instance, a stable partition generalises the concept of a

stable matching. In Sec. 4.3.2 we define the notion of a stable partition

and state some of the properties arising from it. Then in Sec. 4.3.3 we

describe an algorithm for constructing a stable partition. In Sec. 4.3.4 we

consider the problem of finding, given an sri instance I, a maximum stable

matching (i.e., a maximum matching in I such that there is no blocking pair

involving the assigned agents). Then in Sec. 4.3.5, we explore the concept

of a stable half-matching [81], which is equivalent to a stable partition.

Finally, in Sec. 4.3.6, we describe P-stable matchings and absorbing sets,

which provide additional methods (besides the one given in Sec. 4.3.4) for

coping with the possible unsolvability of an sri instance.

4.3.2 Definition and structure of stable partitions

We begin by giving a concise definition of a stable partition, due to Pittel

and Irving [482]. The definition is valid for sri instances, so we state it

in this more general context, however we require to extend the preference

list of agent ai so that ai ranks herself last (i.e., after all other agents on

her original preference list). We assume henceforth in the remainder of this

section that this has implicitly been done, for a given sri instance.
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Definition 4.2 ([557,482]). Let I be an instance of sri where A is the

set of agents. A stable partition is a permutation Π of A satisfying the

following two properties, for each ai ∈ A:

(i) either Π(ai) = Π−1(ai) or ai prefers Π(ai) to Π−1(ai);

(ii) if ai prefers aj to Π−1(ai) then aj prefers Π−1(aj) to ai.

For a given agent ai, we define Π(ai) and Π−1(ai) as the successor and

predecessor of ai, respectively, relative to Π. We refer to a cycle in Π

(which could be of length 1) of odd (respectively even) length as an odd

(respectively even) party.

As stated in Ref. [482], we remark that if ai is a fixed point of Π then ai
is both her own predecessor and successor. Moreover if (ai aj) forms a

transposition of Π then ai is both the predecessor and successor of aj and

vice versa.

The first result of this section indicates that a stable partition is guar-

anteed to exist in an instance of sri, and can be found in linear time.

Theorem 4.3 ([557]). Let I be an instance of sri. Then I admits a

stable partition, which can be found in O(m) time, where m is the number

of acceptable pairs of agents in I.

We will consider algorithms for finding a stable partition in more detail in

Sec. 4.3.3.

It is an immediate consequence of Condition (ii) in Definition 4.2 that

if every party in a given stable partition Π is of length 1 or 2 then the even

parties in Π give rise to a stable matching M , and the odd parties in Π

correspond to the agents who are unassigned in M . It turns out that there

is a more general case in which Π may give rise to a stable matching, as

indicated by the following results.

Theorem 4.4 ([557]). Let I be an sri instance and let Π be a stable

partition in I. Suppose that C = (a1 a2 . . . a2k) is an even party in Π

for some k ≥ 2. Then Π′ = (Π\C) ∪ (a1 a2) (a3 a4) . . . (a2k−1 a2k) and

Π′′ = (Π\C) ∪ (a2 a3) (a4 a5) . . . (a2k a1) are also stable partitions in I.

Corollary 4.5 ([557]). Let I be an sri instance. If Π is a stable partition

in I in which every party has length 1 or 2, then I is solvable. Conversely

if I admits a stable matching M then M gives rise to a stable partition Π

in I in which every party has length 1 or 2.
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The next result indicates the effect on the solvability of I if an odd party

in a given stable partition in I has length ≥ 3.

Theorem 4.6 ([557]). Let I be an sri instance and let Π be a stable

partition in I. Suppose that Π contains an odd party of length ≥ 3. Then

I is unsolvable.

The following theorem is key towards proving that Theorem 4.6 gives rise

to a characterisation of the unsolvability of an sri instance.

Theorem 4.7 ([557]). Let I be an sri instance. Then any two stable

partitions in I contain exactly the same odd parties.

An alternative, simpler, proof of Theorem 4.7 appears in [558]. We are now

in a position to state Tan’s characterisation of the unsolvability of a given

sri instance I in terms of the parties contained in any stable partition of

I, which is an immediate consequence of Corollary 4.5 and Theorem 4.7.

Corollary 4.8 ([557]). Let I be an sri instance and let Π be a stable

partition in I. Then I is unsolvable if and only if Π contains an odd party

of length ≥ 3.

The existence of an odd party of length ≥ 3 in a stable partition in I has

been referred to as a “succinct certificate” in the literature for the unsolv-

ability of I [557]. This is because, in the absence of the stable partition

structure, a human who wishes to verify that I is unsolvable in polynomial

time would have to make do with an execution trace of Irving’s algorithm

([306]) as applied to I. Although this is bound to have O(m) size (where

m is the number of acceptable pairs in I), such a trace would in general

be considerably more complex for a human to verify than a single stable

partition Π in I. Once Π has been generated, it is of course a simple matter

to check for the existence of an odd party of length ≥ 3.

As noted by Pittel and Irving [482], the concept of an odd party of length

≥ 3 in a stable partition, and Corollary 4.8, was implicit in the notion of

an “improper rotation” introduced by Irving [307], but the full significance

of odd parties was first understood and established by Tan [557].

Example 4.9 ([482]). Consider sr instances I1 and I2 shown in Fig. 4.1.

In I1, there are five stable partitions, namely Π1 = (a1 a4 a2 a6)(a3 a5),

Π2 = (a1 a6 a3 a5)(a2 a4), Π3 = (a1 a4)(a2 a6)(a3 a5), Π4 =

(a1 a6)(a2 a4)(a3 a5) and Π5 = (a1 a5)(a3 a6)(a2 a4); clearly Π3, Π4 and
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a1 : a2 a4 a3 a6 a5 a1 a1 : a2 a3 a6 a5 a4 a1

a2 : a6 a5 a4 a1 a3 a2 a2 : a6 a1 a3 a4 a5 a2

a3 : a2 a5 a6 a1 a4 a3 a3 : a6 a2 a5 a1 a4 a3

a4 : a5 a2 a1 a3 a6 a4 a4 : a6 a2 a5 a1 a3 a4

a5 : a1 a3 a2 a4 a6 a5 a5 : a1 a2 a3 a6 a4 a5

a6 : a3 a1 a4 a5 a2 a6 a6 : a5 a2 a1 a3 a4 a6

I1 I2

Fig. 4.1 Instances I1 and I2 of sr due to Pittel and Irving [482]

Π5 give rise to stable matchings. In I2 there is a single stable partition,

namely Π = (a1 a3 a5)(a2 a6)(a4), and therefore I2 is unsolvable.

4.3.3 Algorithms for finding a stable partition

As noted in the previous subsection, Tan [557] gave an O(m) algorithm for

finding a stable partition in a given sri instance I, wherem is the number of

acceptable pairs in I. This algorithm is an extended and modified version of

Irving’s algorithm [306] for finding a stable matching in I or reporting that

none exists. Later, Tan and Hsueh [559] described an alternative algorithm

for constructing a stable partition in I which is conceptually simpler but

has O(n3) complexity, where n is the number of agents in I. This algorithm

has been referred to as dynamic or incremental [81] because it essentially

assumes that a stable partition Πr is given for an sri instance Ir with r

agents, and shows how to modify Πr to arrive at a stable partition Πr+1 for

an sri instance Ir+1, where Ir+1 is obtained from Ir following the arrival

of some additional agent. A nice exposition of the Tan–Hsueh algorithm

is given by Pittel and Irving [482], and our description of the algorithm

in this section is based on their approach. However unfortunately their

pseudocode is not quite correct1; we have used the description given by

Biró et al. [81] in order to correct the error. (The incorrect steps in Pittel

and Irving’s pseudocode are revealed by Figs. 4 and 5 in Ref. [81]; we use

the same example at the end of this subsection to illustrate the problem.)

We begin by describing the Tan–Hsueh algorithm for the offline version

of the problem.

Suppose that I is an sri instance and A = {a1, . . . , an} is the set of

agents in I. Let Ir denote the restriction of I in which the set of agents in

Ir is Ar = {a1, . . . , ar}, and the preference list of an agent ai ∈ Ar in Ir is
1It is important to stress that the incorrect steps in the algorithm do not affect the

results in Ref. [482], since in the subsequent exposition, it turns out that the affected
case in the algorithm in Fig. 1 of that paper (lines 20–22) can never arise.
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Algorithm 4.1 Algorithm Tan–Hsueh [559, 482]

Require: Πr is a reduced stable partition of Ir
Ensure: Πr+1 is a reduced stable partition of Ir+1

1: Πr+1 := Πr;
2: ap :=ar+1; {ap denotes the “proposer”}
3: Q := 〈〉;
4: cycling := false;
5: loop

6: if some agent aq on ap’s list prefers ap to aq’s predecessor in Πr+1 then

7: aq := most-preferred such agent; {according to ap’s list in Ir+1}
8: append(Q, 〈ap, aq〉);
9: if cycling and aq = ax then

10: 〈ax, ai1 , ai2 , . . . , ai2k−1
, ap, aq〉 :=suffix(Q,ax);

11: C := (ax ai1)(ai2 ai3) . . . (ai2k−2
ai2k−1

);
12: Πr+1 := (Πr+1 \ C) ∪ (ap ai2k−1

. . . ai2 ai1 ax);
13: return ;
14: else if aq is in an odd party C = (aq ai1 ai2 . . . ai2k) of Πr+1 then

15: Πr+1 := (Πr+1\C) ∪ (ap aq)(ai1 ai2) . . . (ai2k−1
ai2k);

16: return ;
17: else {aq is in a transposition of Πr+1}
18: at := Πr+1(aq);
19: Πr+1 := (Πr+1 \ (aq at)) ∪ (ap aq);
20: ap := at; {at is the next proposer}
21: if !cycling and aq was previously a proposer then

22: cycling := true;
23: ax := at;
24: end if

25: end if

26: else

27: Πr+1(ap) := ap;
28: return ;
29: end if

30: end loop

derived from her preference list in I by simply deleting any agent in A\Ar.

Clearly the unique stable partition of I1 is Π1 = (a1). Algorithm Tan–

Hsueh, described in Algorithm 4.1, constructs a stable partition Πr+1 in

Ir+1, given a stable partition Πr in Ir (1 ≤ r ≤ n−1). In fact the algorithm

assumes that Πr is a reduced stable partition and ensures that Πr+1 also

satisfies this property. A stable partition is reduced if every even party is

of length 2. By Theorem 4.4, any stable partition can be transformed to a

reduced stable partition in linear time; clearly this property is satisfied by

Π2 in any case.
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The algorithm begins by initialising Πr+1 to be equal to Πr. A proposer

ap is then identified who will make proposals to certain agents on her pref-

erence list in the spirit of the Gale–Shapley algorithm; ap is initially ar+1.

Also a queue of agents Q is maintained, which is initially empty. Finally,

a boolean cycling is maintained, which indicates whether we are travelling

round an odd cycle; initially cycling is set to false. We then enter a loop

which iterates until one of three possible exit conditions loop is reached.

Within a loop iteration, we test whether there is an agent aq on ap’s list

who prefers ap to aq’s predecessor in Πr+1. If this is not the case then we

simply set ap to be a fixed point under Πr+1 and exit. Otherwise we let aq
be the most-preferred agent on ap’s list with the aforementioned property.

Implicitly ap proposes to aq here, denoted by ap → aq. We append ap and

aq to Q in that order.

Assume that cycling is still false at this point. If aq is in an odd party2

C = (aq ai1 ai2 . . . ai2k) of Πr+1 for some k ≥ 0, then we replace C

by the transpositions (ap aq) (ai1 ai2) . . . (ai2k−1
ai2k) in Πr+1, and exit.

Otherwise aq must be in a transposition (aq at) of Πr+1, since Πr is reduced,

and this property is also a loop invariant for Πr+1. We replace (aq at) by

(ap aq) in Πr+1, and at becomes the proposer for the next loop iteration.

If aq was previously a proposer then cycling is set to true and we store at
in ax. Intuitively, at this point the proposal process has cycled. However

a fundamental theorem of Tan and Hsueh [559] states that, if we allow

the proposal process to continue with ax, each subsequent proposal ap →
aq satisfies the property that aq belongs to a transposition of Πr+1, and

moreover, the sequence “returns” to the point where aq = ax. That is, the

proposals starting from the very next loop iteration after ax was initialised

are as follows:

ax → ai1 , ai2 → ai3 , . . . , ai2k−2
→ ai2k−1

, ai2k → aq,

where aq = ax and {ax, ai1 , ai2 , . . . , ai2k−1
, ai2k} are distinct agents. This

is recognised by the conditional at line 9 of the algorithm. In that loop

iteration, ai2k = ap. This sequence of proposers and proposees is obtained

using the method suffix(Q, ax), which returns the sub-list ofQ starting from

the second-last occurrence of ax. Tan and Hsueh’s fundamental theorem

further states that the transpositions (ax ai1) (ai2 ai3) . . . (ai2k−2
ai2k−1

)

should be replaced by the odd party (ap ai2k−1
ai2k−2

. . . ai2 ai1 ax) in

Πr+1. After completing this step, the algorithm terminates. Thus, cycling

being true signifies that agents are proposing around an odd cycle.
2In fact this case cannot arise if cycling is true, as we later point out.
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Agents’ preferences Proposals (ap → aq) at Π7

a1 : a3 a2 1. a7 → a6 a5 (a1 a2)(a3 a4)(a6 a7)
a2 : a1 a4 2. a5 → a4 a3 (a1 a2)(a4 a5)(a6 a7)
a3 : a4 a1 3. a3 → a1 a2 (a1 a3)(a4 a5)(a6 a7)
a4 : a2 a5 a3 4. a2 → a4 a5 (a1 a3)(a2 a4)(a6 a7)
a5 : a6 a4 a7 5. a5 → a7 a6 (a1 a3)(a2 a4)(a5 a7)
a6 : a7 a5 6. a6 → a5 a7 (a1 a3)(a2 a4)(a5 a6)
a7 : a5 a6 7. a7 → a6 a5 (a1 a3)(a2 a4)(a5 a6 a7)

Fig. 4.2 An execution of Algorithm Tan–Hsueh as applied to an sri instance due to
Biró et al. [81].

The time complexity of Algorithm Tan–Hsueh is O(n2) as noted in Ref.

[559]. We summarise the preceding discussion with the following theorem.

Theorem 4.10 ([559]). Let I be an instance of sri of size n. Then, by

using Algorithm Tan–Hsueh n−2 times, we can construct a stable partition

in I in O(n3) time.

For the online version of the problem, let Ir be an sri instance with

agents Ar = {a1, . . . , ar}. Construct a reduced stable partition Πr in Ir
either using Algorithm Tan–Hsueh or otherwise. Now suppose that agent

ar+1 arrives. Let Ir+1 denote the sri instance with agents Ar+1 = Ar ∪
{ar+1}. The preference lists in Ir+1 are constructed as follows. We suppose

that ar+1 ranks in strict order a subset S of the agents in Ar (followed

by ar+1). Each agent ai ∈ S then inserts ar+1 into some position ki her

preference list, demoting by one place each agent who was ranked in position

ki or worse in ai’s preference list in Ir . Now Algorithm Tan–Hsueh can be

used to construct Πr+1, a reduced stable partition in Ir+1.

We now give an example to illustrate the operation of Algorithm Tan–

Hsueh as applied to the unsolvable sri instance I with 7 agents, due to Biró

et al. [81], as shown in Fig. 4.2. In I6, Π6 = (a1 a2)(a3 a4)(a5 a6) is a stable

matching, and hence a reduced stable partition. We now execute Algorithm

Tan–Hsueh in order to construct Π7 from Π6. The proposals, and the values

of at and Π7 at each loop iteration are shown in Fig. 4.2. After proposal 5,

aq = a7 is recognised as previously having been a proposer, so the cycling

boolean is set to true, and at = a6 is recorded as ax. Then, after proposal

7, aq = ax = a6, and thus the algorithm recognises that the odd cycle is

complete. At this point, suffix(Q, aq) = 〈a6, a5, a7, a6〉, so the algorithm

removes the transposition (a5 a6) from Π7, adds the odd cycle (a5 a6 a7)

to Π7, and terminates with Π7 = (a1 a3)(a2 a4)(a5 a6 a7) as a reduced
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stable partition in I7. On the other hand the algorithm of Pittel and Irving

[482] tests whether the proposee aq has previously been a proposer, and if

so, it adds a new odd cycle containing all proposees and proposers since

aq. Thus in I7, their algorithm terminates after proposal 5 with the cycle

(a7 a5 a4 a2 a1 a3 a4 a5 a6), which is clearly incorrect. The error stems from

the fact that the algorithm did not allow the proposal sequence to continue

to the “return” in step 7, from where we deduce the true odd party.

4.3.4 Maximum stable matchings

To cope with the possible non-existence of a stable matching in a given

sri instance I, Tan [556, 558] introduced the notion of a maximum stable

matching in I. This is a matching M of maximum size satisfying the

property that there is no blocking pair of M in I involving the agents who

are assigned in M (i.e., the assigned agents are said to be stable within

themselves). This definition should not be ambiguous because, for solvable

instances of sri, all stable matchings have the same cardinality [261, Sec.

4.5.2], and therefore the notion of a stable matching of maximum size is

redundant.

More formally, if A is the set of agents in I, let AM ⊆ A denote the set

of agents who are assigned in a given matching M in I. Also for S ⊆ A,

let I\S denote the sub-instance of I obtained by deleting each ai ∈ S

(and by implication, by deleting each such ai from the preference list of

each aj ∈ A\S). For brevity, we denote I\(A\AM ) by IAM
. Then M is a

maximum stable matching in I if and only if (i) M is stable in IAM
, and

(ii) |M | is maximum subject to (i).

Clearly, if there are at least two agents in I then any maximum stable

matching in I has size at least 2. For a less trivial example, observe that

M = {{a1, a3}, {a2, a6}} is a maximum stable matching in the sr instance

I2 shown in Fig. 4.1.

For the remainder of this section we show how to find a maximum stable

matching in I. We begin with the following result, proved by Tan [558].

Proposition 4.11 ([558]). Let I be an instance of sri and let Π be a

stable partition in I. Suppose that C = (ai1 ai2 . . . ai2k+1
) is an odd party

in Π for some k ≥ 1. Then Π′ = (Π\C) ∪ (ai1 ai2)(ai3 ai4) . . . (ai2k−1
ai2k)

is a stable partition of I\{ai2k+1
}.

For a given sri instance I, let O(I) denote the number of odd parties in any

stable partition of I (this number is well-defined by Theorem 4.7). Clearly,



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

4.3. Stable partitions 189

in the context of Proposition 4.11, it follows that O(I\{ai2k+1
}) = O(I)−1.

It turns out that a greater reduction in the number of odd parties cannot be

achieved by deleting an agent from an even party, as the following theorem

indicates (in fact the number of odd parties could possibly increase in this

case).

Theorem 4.12 ([558]). Let I be an instance of sri and let A be the set

of agents in I. Then |O(I\{ai})−O(I)| = 1 for any ai ∈ A.

We now present the main result of this subsection, whose proof indicates

how to efficiently find a maximum stable matching in a given sri instance.

Theorem 4.13 ([558]). Let I be an instance of sri. A maximum stable

matching in I can be constructed in O(m) time, where m is the number of

acceptable pairs of agents in I.

Proof. Construct a stable partition Π in I; by Theorem 4.3 this can be

achieved in O(m) time. Let k be the number of odd parties in Π. Then

O(I) = k, so that, by Theorem 4.12, it is necessary to delete at least k

agents from I in order to arrive at an sri instance I ′ such that O(I ′) = 0.

Such an instance I ′ is solvable by Corollary 4.8. Let I0 = I. Following

Proposition 4.11, we form I1 = I0\{ai}, where ai is an agent in an odd

party in I0, and we let Π1 = Π′, where Π′ is as described in Proposition

4.11. We iterate this process, forming I2, . . . , Ik and Π2, . . . ,Πk. Then

O(Ij) = O(Ij−1) − 1 (2 ≤ j ≤ k) and hence O(Ik) = 0. Thus stable

partition Πk contains no odd parties, and thus gives rise to a maximum

stable matching in I by Theorem 4.4. Clearly Πk can be constructed from

Π in O(m) time. �

Corollary 4.14 ([558]). Let I be an instance of sri. Then a maximum

stable matching in I has size (n−O(I))/2, where n is the size of I.

Tan [556] also described an alternative O(m) approach for finding a maxi-

mum stable matching based on a modified and extended version of Irving’s

algorithm [306] for sr.

We also remark that the concept of a maximum stable matching is

equally applicable when I is solvable. In such a setting, it is tempting

to consider the relative sizes of a maximum stable matching and a stable

matching in I. The following proposition resolves this question.
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Proposition 4.15. Let I be a solvable instance of sri and let M be a stable

matching in I. Then M is a maximum stable matching in I.

Proof. ClearlyM is stable in IAM
. Hence, to show thatM is a maximum

stable matching, it remains to show that |M | = |M ′|, where |M ′| is a

maximum stable matching in I. By Corollary 4.14, |M ′| = (n − O(I))/2,

where n is the size of I. But I is solvable, so no odd party in I has length

greater than 1. Hence each odd party in I corresponds to an unassigned

agent in M , i.e., O(I) = n− 2|M |. Thus |M | = |M ′|. �

We close this subsection by noting that, as observed by Biró et al. [81],

the Tan–Hsueh algorithm is equivalent to the Roth–Vande Vate algorithm

[516] (see Sec. 2.6) in the bipartite case.

4.3.5 Stable half-matchings

Biró et al. [81] defined the concept of a stable half-matching in an instance

of sri, and showed that it is equivalent to a stable partition.3 Let I be an

instance of sri and let G = (A,E) be the underlying graph of I (ignoring

self-loops). A half-matching Mh in I is a set of edges in G that can be

partitioned into two sets, namely H (half-weighted edges) and M (matching

edges), such that in G, each ai ∈ A is incident to either (i) one edge of M

and no edge of H , or (ii) no edge of M and at most two edges of H . A half-

matching Mh is stable if (i), for each e ∈ E\Mh, there exists an endpoint

ai ∈ E such that either (a) {ai, ak} ∈ M for some ak such that ai prefers

ak to aj or (b) {{ai, ak}, {ai, al}} ⊆ H for some ak, al such that ai prefers

each of ak and al to aj , where e = {ai, aj}, and (ii), for each e ∈ H , there

exists an endpoint ai ∈ E such that {ai, ak} ∈ H for some ak such that ai
prefers ak to aj, where e = {ai, aj}.

As described by Biró et al. [81], half-matchings can represent a practical

situation where agents can create half-time partnerships. For example,

if preference lists represent rankings of potential partners for a one-hour

tennis match, then an agent could either not play at all, or play for half

an hour with one partner, or play for one hour with two different partners

(half an hour with each), or play for one hour with one partner. Stability

represents the situation in which no two agents would like to improve their

assignment by playing together for more time than before (including the

3In fact the concept was first defined, and its equivalence to a stable partition was first
recognised, by Aharoni and Fleiner [33]. However the term stable half-matching was
used by Biró et al. [81], and we base our exposition on their notation and terminology.
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case where they were not already assigned to play together), and by possibly

rejecting one or both (if applicable) of their existing partnerships in order

to do so.

A stable half-matching can also be defined formally as follows. Let Mh

be a set of edges in G that is partitioned into two sets, namely H and M ,

as above. Let xMh
: E −→ {0, 12 , 1} be a weight function where, for e ∈ E,

xMh
(e) =











0, e /∈ H ∪M
1
2 , e ∈ H

1 e ∈ M.

Then Mh is a half-matching if, for each ai ∈ A,

∑

{xMh
(e) : e ∈ E ∧ ai ∈ e} ≤ 1.

Now suppose {{ai, aj}, {ai, ak}} ⊆ E. Define aj �ai
ak if either ai prefers

aj to ak or aj = ak. A half-matching Mh is stable if, for each e ∈ E, there

exists ai ∈ e such that

∑

{xMh
(e′) : e′ = {ai, ak} ∈ E ∧ ak �ai

aj} = 1,

where e = {ai, aj}.
The concept of a stable half-matching is equivalent to that of a stable

partition, which may be seen as follows. Let Π be a stable partition in

I. By Theorem 4.4 we may assume that Π is reduced. Construct a stable

half-matching Mh in I as follows. For each transposition (ai aj) in Π, add

{ai, aj} to M . If (ai0 , ai1 , . . . , ai2k) is an odd party in Π for some k ≥ 1,

add {air , air+1
} to H (0 ≤ r ≤ 2k, where addition is taken modulo 2k+1).

Finally let Mh = M ∪H . It is straightforward to verify that Mh is a stable

half-matching in I. Conversely suppose that Mh is a stable half-matching

in I. Form a stable partition Π as follows. For each edge {ai, aj} ∈ M ,

add the transposition (ai aj) to Π. The stability condition implies that the

edges in H form a collection of cycles in G, each of length at least 3; add

each such cycle to Π. It may be verified that Π is a stable partition in I.

Aharoni and Fleiner [33] used a game-theoretic result of Scarf [521] to

independently prove the existence of a stable half-matching for an instance

of sri.
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4.3.6 P-stable matchings and absorbing sets

In Sec. 4.3.4, we showed that a stable partition can be used to construct

a matching that is “stable” in a weaker sense than classical stability, as a

means of coping with the possible non-existence of a stable matching. In

this subsection we survey two alternative structures for achieving a similar

outcome, both of which can be derived from a stable partition. The first

such structure, defined by Inarra et el. [303], is called a P-stable matching,

and can be defined as follows.

Let I be an sri instance and let Π be a stable partition in I. Then

a P-stable matching is a matching M in I such that, for each party

C = (ai1 ai2 . . . air ) in Π, and for each j (1 ≤ j ≤ r), M(aij ) ∈
{Π−1(aij ),Π(aij )}, apart from a unique k such that ak is unassigned in

M in the case that r is odd. Clearly (as a consequence of Theorem 4.3),

I admits at least one P-stable matching, and if I is solvable then the set

of P-stable matchings, taken over all stable partitions, coincides with the

set of stable matchings. Moreover, the P-stable matchings are precisely

the maximum stable matchings as defined in Sec. 4.3.4 (to verify this, the

reader is referred to the proof of Theorem 4.13).

Inarra et al. [303] gave an algorithm for finding a P-stable matching

based on the operation of satisfying a blocking pair. This operation can

be described as follows: if M and M ′ are two matchings in I, then M ′ is

obtained from M by satisfying a blocking pair {ai, aj} of M if (i) {ai, aj} ∈
M ′, (ii) M(ai) (if it exists) is unassigned in M ′, (iii) M(aj) (if it exists) is

unassigned in M ′, and (iv) every pair of M not including ai or aj is in M ′.

The algorithm of Inarra et al. proceeds along the following lines: starting

from an arbitrary matching M0, a sequence of matchings M1,M2, . . . ,Mk

is constructed such that Mk is a P-stable matching, and Mi is obtained

from Mi−1 by satisfying a blocking pair (1 ≤ i ≤ k).

This algorithm generalises that of Diamantoudi et al. [167], who pro-

vided an algorithm along similar lines for solvable instances of sri. In

particular, Diamantoudi et al. showed that a similar sequence exists for

solvable sri instances with the outcome that the final matching Mk is sta-

ble. Their algorithm in turn generalises the Roth–Vande Vate algorithm

[516] for smi (see Sec. 2.6).

Chung [153] had already given worked towards generalising Roth and

Vande Vate’s results to the sri case: he showed that, for sri instances sat-

isfying the so-called “no odd ring” condition (see Ref. [153] for further de-

tails), the Roth–Vande Vate algorithm [516] converges to a stable matching
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with probability 1. This condition is not equivalent to the property that

a stable partition contains no odd party. Moreover, whilst the “no odd

ring” condition is sufficient for the existence of a stable matching, it is not

a necessary condition, as pointed out by Diamantoudi et al. [167]. Thus

Chung’s algorithm is not applicable to the wider class of all solvable sri

instances. Also Lebedev et al. [403] showed that, for sri instances with

so-called acyclic preferences, which arise in the context of P2P networks

(see Sec. 4.7.2), a stable matching can always be reached from an initial

matching by iteratively satisfying blocking pairs. See also Refs. [429–431].

Biró and Norman [95] greatly simplified the landscape by showing that

the Tan–Hsueh algorithm (see Sec. 4.3.3) can be used in order to construct

a sequence of matchings, each one formed from its predecessor by satisfy-

ing a blocking pair, that ultimately yields a P-stable matching. The proof

of correctness of this approach is simpler than that of Inarra et al. [303].

For solvable instances of sri, the sequence ultimately produces a stable

matching, and thus the result also implies that of Diamantoudi et al. [167]

(and again, Biró and Norman have a shorter correctness proof for their ap-

proach). Moreover Biró and Norman showed that the sequence terminates

after satisfying at most O(nm) blocking pairs (here n = |A| and m = |E|,
where G = (A,E) is the underlying graph of I); note that Inarra et al.

[303] and Diamantoudi et al. [167] could only guarantee that their sequence

was finite in each case, rather than terminating in a polynomial number of

steps.

When defining the notion of a P-stable matching, a key aim of Inarra et

al. [303] was to formulate a structure that (i) is always present for an abi-

trary sri instance I, (ii) coincides with a stable matching if I is solvable, and

(iii) satisfies a weaker notion of stability if I is unsolvable. Besides P-stable

matchings, in another paper, Inarra et al. [304] define a further structure

(although inherently related to P-stable matchings) that also satisfies these

three properties, namely so-called absorbing sets.

Let I be an sri instance and let M be the set of all matchings in

I. Absorbing sets are defined in terms of a dominance concept. In this

context, a matching M ′ ∈ M is said to dominate a matching M ∈ M
if there is a finite sequence of matchings M = M0,M1, . . . ,Mk = M ′ in

M such that Mi can be obtained from Mi−1 by satisfying a blocking pair

(1 ≤ i ≤ k). A set of matchings A ⊆ M is an absorbing set if (i) every pair

of distinct matchings in A dominate one another, and (ii) no matching in

A is dominated by a matching in M\A. Thus, A comprises matchings that

are reachable from one another by successively satisfying blocking pairs,
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and such that no matching in M\A can be reached from a matching in A
by successively satisfying blocking pairs.

Inarra et al. [304] proved that, if I is solvable then an absorbing set is

a singleton consisting of a stable matching, and conversely, a singleton set

consisting of a stable matching is an absorbing set. More generally, for an

arbitrary sri instance I, and for an absorbing set A in I, the authors proved

that A can be obtained from some stable partition Π in I by taking the

union of the P-stable matchings relative to Π together with the matchings

that dominate them. Furthermore, since not all stable partitions in I induce

absorbing sets in this way, the authors characterised those stable partitions

that do give rise to an absorbing set; such a stable partition is bound to

exist in I.

4.4 Mirror posets and median graphs

Cheng and Lin [146] established important structural relationships between

the set of stable matchings S in a given sr instance I and so-called mirror

posets and median graphs . Their observations help to provide a meet-

semilattice structure for S that the authors consider to be more “natural”

than the semilattice proposed by Gusfield and Irving [261] and summarised

by Theorem 1.21. The structural correspondence also sheds light on the

observed “local/global median phenomenon” of stable matchings in I (see

Sec. 2.7, and Theorem 2.19 in particular). In particular, as we will see

in this section, an analogue of this phenomenon, and of Theorem 2.19 in

particular, holds in the sr context. In this section we give an overview of

these structural results.

We begin by considering generalised median stable matchings in the sr

context. Given an sr instance I and a set of stable matchings T in I, it is

straightforward to extend the definitions of PT (ai) and Pj,T (ai) given on

Page 90 to I, where ai is an agent in I, 1 ≤ j ≤ t and t = |T |. Teo and

Sethuraman [565] proved the following version of Theorem 2.9 for sr:

Theorem 4.16 ([565]). Let I be an sr instance, let T be a set of stable

matchings in I and let t = |T |. If t is odd then the set of pairs M in

which M(ai) = p(t+1)/2,T (ai) for each agent ai is a stable matching in I.

If t is even then there is a stable matching M in I such that M(ai) ∈
{pt/2,T (ai), pt/2+1,T (ai)} for each agent ai.
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We refer to the stable matching M whose existence is guaranteed by Theo-

rem 4.16 as a median stable matching in I. Klaus and Klijn [391] indepen-

dently proved Theorem 4.16, showing that it holds even if T is a multiset

containing (not necessarily distinct) stable matchings.

We now turn to the structural correspondence between mirror posets

and median graphs, where the latter concept has a close relationship with

median stable matchings. Cheng and Lin [146] defined a poset P = (P,◭)

to be a mirror poset if the elements of P can be partitioned into dual pairs,

where the dual of ρ ∈ P is denoted by ρ̄, such that (i) ρ 6≺ ρ̄, and (ii) σ ≺ ρ

if and only if ρ̄ ≺ σ̄ for any ρ, σ in P . Given an sr instance I, let S denote

the set of stable matchings in I, let R = R(I) denote the set of rotations

in I, and let ⊳ be the partial order on rotations defined in Sec. 1.4.4. Let

R′ denote the non-singular rotations of I. Then Lemma 4.3.7 of Ref. [261]

implies that (R′,⊳) is a mirror poset.

A graph G = (V,E) is defined to be a median graph if, for any three

vertices u, v, w in V , there is a unique vertex x ∈ V such that x lies on a

shortest path from u to v, from u to w and from v to w in G. A vertex v ∈ V

is a median of G if
∑

w∈V d(v, w) is minimum, taken over all vertices in V ,

where d(v, w) is the length of a shortest path from v to w in G. Median

graphs were first studied by Avann [51], and independently introduced by

Nebeský [460], Mulder [458], and Mulder and Schrijver [457].

Recall from Sec. 1.4.4 the definitions of closed and complete subsets of

rotations in I. It is straightforward to generalise these definitions to the

case of an arbitrary mirror poset P = (P,◭). That is, a set S ⊆ P is closed

if, for each ρ ∈ S and σ ∈ P , σ ≺ ρ implies that σ ∈ S. Also S is complete

if S contains exactly one of each pair of dual elements of P .

We are now in a position to summarise Cheng and Lin’s structural

results via the following theorem.

Theorem 4.17 ([146]). The structural relationships between mirror

posets, median graphs and stable matchings in an sr instance, as shown

in Fig. 4.3, hold. In particular:

(i) Given an sr instance I, (R′,⊳) is a mirror poset, where R′ is the set

of non-singular rotations in I and ⊳ is the partial order on rotations

defined in Sec. 1.4.4. By Theorem 1.23, the complete closed subsets of

R′ are in 1–1 correspondence with the stable matchings in I.

(ii) Given a mirror poset P = (P,◭), let SP be the set of all closed complete

subsets of P . Define G(SP ) to be the graph with vertex set SP , where

two vertices R1 and R2 are adjacent if and only if they differ in one
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dual element, i.e., there is an element ρ ∈ P such that ρ ∈ R1, ρ̄ ∈ R2,

and R1\{ρ} = R2\{ρ̄}. Then G(SP) is a median graph.

(iii) Given an sr instance I, there is a corresponding median graph. This

relationship, which follows by (i) and (ii), can be described as follows.

Let S be the set of stable matchings and let R′ be the set of non-

singular rotations in I. By Theorem 1.23, the complete closed subsets

of R′ are in 1–1 correspondence with the matchings in S. Given any

M ∈ S, let RM denote the associated subset of R′ according to this

1–1 correspondence. Define G(S) to be the graph with vertex set S,
where two vertices M and M ′ are adjacent if and only if RM and RM ′

differ by one rotation. (Since RM and RM ′ are complete subsets of

R′, this is equivalent to the condition that there exists ρ ∈ R′ such

that ρ ∈ RM , ρ̄ ∈ RM ′ , and RM\{ρ} = RM ′\{ρ̄}.) Clearly G(S) is

isomorphic to G(SR′ ), as defined in (ii), and hence by (ii), G(S) is a

median graph.

(iv) Let P be a mirror poset with 2n elements. Then there is an sr instance

I with O(n2) agents such that R′ is isomorphic to P, where R′ is the

set of non-singular rotations in I. Moreover, when the dual of each

element in P is given, I can be constructed in O(n2) time.

(v) Let G = (V,E) be a median graph. Then there is an sr instance I

such that G(S) (as defined in (iii)) is isomorphic to G, where S is the

set of stable matchings in I.

(vi) Given a median graph, there is a corresponding mirror poset (this fol-

lows by (v) and (i); alternatively, see Lemma 14 of Ref. [146] for a

direct construction of a mirror poset from a median graph).

Cheng and Lin argued that, for a given sr instance I, G(S) (defined by

Part (iii) of Theorem 4.17) is the “natural representation” of the set of

stable matchings S in G. This is because (as established by Part (iii)

of Theorem 4.17) G(S) is a median graph, and thus can be viewed as a

median semilattice. Also, as Cheng and Lin assert, this median semilattice

is isomorphic to the meet-semilattice for S due to Gusfield and Irving [261].

Further evidence that G(S) is the “right way” to generalise the distributive

lattice structure for sm stable matchings to the sr case is given by Fig. 4.4.

The purpose of this figure is to illustrate that, in the sm case, dualities

hold involving distributive lattices, posets and sm stable matchings that

are analogous to the correspondences labelled (i)–(vi) in Fig. 4.3, in terms

of median graphs, mirror posets and sr stable matchings. We explain each

of the correspondences from Fig. 4.4 in the sm case as follows:
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Fig. 4.3 Structural relationships for sr established by Cheng and Lin [146]
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Fig. 4.4 Structural relationships for sm generalised by Cheng and Lin [146] to sr

(i) For a given sm instance I, the corresponding poset is given by

(R(I),⊳), where R(I) is the set of rotations in I and ⊳ is the par-

tial order on rotations defined inSec. 1.3.4.3. By Theorem 1.16, there

is a 1–1 correspondence between the stable matchings in I and the

closed subsets of R(I).

(ii) For a given poset, a corresponding distributive lattice may be con-

structed as follows. Let D be a distributive lattice. An element ρ ∈ D
is join-irreducible if ρ is not the join of a finite set of other elements of

D. Equivalently, ρ is join-irreducible if it is neither the bottom element

of D nor the join of any two smaller elements. Now suppose we are
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given a poset P = (P,◭). Let SP be the set of all closed subsets of

P . Define G′(SP) to be the digraph with vertex set SP , where vertex

R1 is adjacent to vertex R2 if and only if R2 = R1 ∪ {ρ} for some

ρ ∈ P . Then SP is a distributive lattice under the operation of set

containment, whose Hasse diagram is given by G′(SP). Moreover the

sub-poset of SP formed by the join-irreducible elements of SP\{M0}
is isomorphic to P , where M0 denotes the top element of SP .

(iii) Given an sm instance I, the set S of stable matchings forms a distribu-

tive lattice under the dominance relation of Definition 1.12.

(iv) Irving and Leather [319] proved that, given any poset P = (P,◭),

there is a corresponding sm instance I, which can be constructed from

P in polynomial time, such that the subsets of P that are closed under

◭ are in 1–1 correspondence with the stable matchings in I.

(v) Gusfield et al. [262] proved that any distributive lattice is the set of

stable matchings (together with the dominance relation over them) for

a small sm instance.

(vi) Birkhoff’s Representation Theorem for distributive lattices [76] asserts

that, for a distributive lattice D, the closed subsets of the poset in-

duced by its join-irreducible elements form a distributive lattice that

is isomorphic to D.

Recall Theorem 4.16, which establishes the existence of a median sta-

ble matching for a given sr instance I. Cheng and Lin [146] proved the

following structural result, which relates median stable matchings in I to

medians of G(S) (defined in Part (iii) of Theorem 4.17), where S is the set

of stable matchings in I.

Corollary 4.18 ([146]). Let I be an sr instance and let S be the set

of stable matchings in I. A stable matching M ∈ S is a median stable

matching in I if and only if M is a median of the graph G(S) as defined in

Part (iii) of Theorem 4.17.

Corollary 4.18 implies that the local/global phenomenon for median stable

matchings in the sm context (as observed in Sec. 2.7) also carries over

to sr. This result provides further evidence that G(S) is the “natural

representation” of the set of stable matchings S in I.
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We also remark that, as part of their construction, Cheng and Lin also de-

duced Theorem 4.16 even in the case that T is a multiset of stable matchings

(i.e., the matchings in T need not be distinct).

4.5 Indifference

4.5.1 Introduction

In this section we study structural and algorithmic results for variants of

sr involving indifference. Recall from Sec. 1.4.5 the definitions of weak

stability, strong stability and super-stability that were given for srpi. We

consider results for each of these criteria in Sections 4.5.2, 4.5.3 and 4.5.4

respectively.

4.5.2 Weakly stable matchings

We firstly remark that it is straightforward to generalise Lemma 3.1 to the

srti case [321]. That is, if I is an instance of srti and M is a matching in

I, then M is weakly stable in I if and only if M is stable in some instance

I ′ of sri derived from I by breaking the ties.

In contrast to the case for sr, Ronn [493] proved that weak srt, the

problem of deciding whether a weakly stable matching exists, given an

instance of srt, is NP-complete. He showed that NP-completeness holds

even if each preference list is either strictly ordered or contains a tie of

length 2 at the head. Alternative (shorter) proofs can be found in Refs.

[261, Sec. 4.5.3] and [321]. In fact, starting from the NP-complete problem

com smti (see Sec. 3.2.4), there is a very short reduction showing the

NP-completeness of weak srt, as we now demonstrate.

Theorem 4.19 ([321]). weak srt is NP-complete.

Proof. Clearly weak srt is in NP. To show NP-hardness, we trans-

form from com smti, which is NP-complete by Theorem 3.6. Hence let I

be an instance of smti in which U = {u1, . . . , un} is the set of men and

W = {w1, . . . , wn} is the set of women. For notational convenience, we

collectively denote the set of men and women in I by A = {a1, . . . , a2n}.
Given any agent ai ∈ A, let P (ai) denote the preference list of ai in I.

We construct an instance I ′ of srt as follows. The set of agents in I ′ is

A ∪ A′ ∪ A′′, where A′ = {a′i : ai ∈ A} and A′′ = {a′′i : ai ∈ A}. Given any
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agent ai ∈ A, the preference lists of ai, a
′
i and a′′i in I ′ are as follows:

ai : P (ai) a′i a′′i . . .

a′i : a
′′
i ai . . .

a′′i : ai a′i . . .

In a given agent’s preference list in I ′, the symbol “. . . ” denotes all remain-

ing agents in I ′ in arbitrary strict order.

Given a complete weakly stable matching M in I, we form a complete

matchingM ′ in I ′ by adding the pairs {a′i, a′′i } toM , for each ai ∈ A; clearly

M ′ is weakly stable in I ′. Conversely, given a weakly stable matching M ′

in I ′, it is straightforward to verify that {a′i, a′′i } ∈ M ′, and ai is assigned to

some agent in P (ai), for each ai ∈ A. Hence M = M ′\{{a′i, a′′i } : ai ∈ A}
is a complete weakly stable matching in I. �

As observed following Corollary 3.7, com smti is NP-complete even if each

person’s list is strictly ordered or is a tie of length 2 [419]. It follows by

inspection of the construction given in the proof of Theorem 4.19 that this

reduction yields NP-completeness for weak-srt under the same conditions

that held under Ronn’s reduction.

Given an instance I of srti, Chung [153] defined a sufficient condition

for the existence of a weakly stable matching based on the absence of an odd

ring. As mentioned in Sec. 4.3.6, this structure is similar to the notion of an

odd party in a stable partition, though they are not quite the same concept.

Most importantly, the non-existence of an odd ring is not a necessary con-

dition for the existence of a weakly stable matching. Chung showed that,

in the absence of an odd ring, a natural extension of the Roth–Vande Vate

algorithm [516] to the srti context converges to a weakly stable matching

in I with probability 1. Chung also identified various types of preference

profiles that give rise to solvable instances of srti.

When preference lists are incomplete, certain results from the smti con-

text (see Sec. 3.2.3 and Corollary 3.7) imply that, given an srti instance

I, weakly stable matchings in I can have different sizes (should they ex-

ist), and the problem of finding a maximum weakly stable matching is

NP-hard. It is also straightforward to generalise the proof of Theorem 3.4

to the srti case, in order to deduce that an srti instance I that is solv-

able under weakly stability admits a weakly stable matching of size k, for

each s−(I) ≤ k ≤ s+(I), where s−(I) (respectively s + (I)) denotes the

minimum (respectively maximum) size of a weakly stable matching in I.

Also, Footnote 1 on Page 136 holds in the context of a general graph, and

therefore it follows that s+(I) ≤ 2s−(I).
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4.5.3 Strongly stable matchings

Scott [523] studied strongly stable matchings in the context of srti. He

showed that, given an instance I of srti that is solvable under strong sta-

bility, the same set of agents are unassigned in all strongly stable matchings

in I [523, Corollary 3.2.3]. Moreover he presented the following result, an-

swering an open problem in Ref. [321]:

Theorem 4.20 ([523]). Let I be an instance of srti. There is an O(m2)

algorithm for finding a strongly stable matching in I or reporting that none

exists, where m is the number of acceptable pairs of agents in I.

This algorithm is based on a combination of Irving’s algorithms for sr [306]

and for smt under strong stability [308]. Scott [523] conjectured that an

O(nm) algorithm should be possible, where n is the size of I, using similar

techniques that Kavitha et al. [364] employed in order to improve the O(m2)

algorithm of Irving et al. for hrt under strong stability [328] to achieve a

running time of O(nm).

O’Malley [470] gave an O(
√
nm) algorithm to find a strongly stable

matching or report that none exists, given an instance I of srti such that

there is a master list of agents. He did likewise for the case that I is an in-

stance of srti with symmetric preferences (i.e., rank(ai, aj) = rank(aj , ai)

for any acceptable pair of agents {ai, aj}).

4.5.4 Super-stable matchings

We firstly observe that it is straightforward to adapt the proof of Lemma

3.24 in order to obtain the following result, as noted in Ref. [321].

Lemma 4.21 ([321]). Let I be an instance of srti, and let M be a match-

ing in I. Then M is super-stable in I if and only if M is stable in every

instance I ′ of sri derived from I by breaking the ties.

It follows immediately from Lemma 4.21 and from Theorem 4.5.2 of Ref.

[261] that, as in the strong stability case, the same set of agents are unas-

signed in all super-stable matchings in I (as observed in Theorem 5.1 of

Ref. [321]). For, if M and M ′ are two super-stable matchings in I, then

M and M ′ are both stable in some instance I ′ of sri obtained from I by

breaking the ties. But Theorem 4.5.2 of Ref. [261] implies that, when M

and M ′ are viewed as stable matchings in I ′, the same set of agents are

assigned in M and M ′.
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Irving and Manlove [321] proved a counterpart of Theorem 4.20 for

super-stability, as follows:

Theorem 4.22 ([321]). Let I be an instance of srti. There is an O(m)

algorithm for finding a super-stable matching in I or reporting that none

exists, where m is the number of acceptable pairs of agents in I.

This algorithm is based on a combination of Irving’s algorithms for sr

[306] and for smt under super-stability [308]. Irving and Manlove [321]

also showed how to extend their algorithm for srti under super-stability to

the srpi case; indeed the structural results described in Lemma 4.21 and

its subsequent paragraph also hold true in such a context (in Lemma 4.21,

“breaking the ties” should be replaced by “forming a linear extension of

each partial order”).

O’Malley [470] gave a simpler O(m) algorithm to find a super-stable

matching or report that none exists, given an instance I of srti such that

there is a master list of agents, where m is the number of acceptable pairs

of agents in I. He did likewise for the case that I is an instance of srti

with symmetric preferences.

Using a polynomial-time reduction from srti under super-stability to

2-sat, we can deduce additional algorithmic results for problems involv-

ing super-stable matchings in the context of srti, including computing all

super-stable pairs, all super-stable matchings and a minimum regret super-

stable matching — see Sec. 4.8.2 for more details.

4.6 “Almost stable” matchings

4.6.1 Introduction

As mentioned in Sec. 4.2.1, the probability that a random instance of sr

with n agents is solvable would seem to decrease fairly steeply as n increases

up to the value of 1000, and continues to decrease beyond this value, albeit

less dramatically. In particular, given a random instance with 10,000 agents,

experiments estimate that the solvability probability is less then 25% [448].

Therefore, as n grows large, these results suggest that an arbitrary

matching in a random sr instance with n agents is likely to admit at least

one blocking pair. However, as discussed in Sec. 2.8, a blocking pair need

not necessarily lead to a given matching being undermined in practice.

Hence a limited number of blocking pairs might be tolerated as a means of
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a4i+1 : a4i+2 a4i+3 a4i+4

a4i+2 : a4i+3 a4i+1 a4i+4

a4i+3 : a4i+1 a4i+2 a4i+4

a4i+4 : a4i+1 a4i+2 a4i+3















0 ≤ i ≤ r − 1

M1
r = {{a4i+1, a4i+2} : 0 ≤ i ≤ r − 1}

M2
r = M1

r ∪ {{a4i+3, a4i+4} : 0 ≤ i ≤ r − 1}

Fig. 4.5 Instance Ir of sr and two matchings M1
r ,M

2
r in Ir

coping with the possible non-existence of a stable matching. This motivates

the problem of finding, given an unsolvable sri instance I, a matching in

I that admits the minimum number of blocking pairs [466, 199, 195]. As

in Sec. 2.8, such a matching is, in the sense described here, “as stable as

possible”.

Let I be an instance of sri and let M denote the set of matchings in I.

Given M ∈ M, it is straightforward to extend the definitions of bp(I,M)

and ba(I,M) from Sec. 2.8 to the sri context. Also we define bp(I) and

ba(I) as follows:

bp(I) = min{|bp(I,M)| : M ∈ M}
ba(I) = min{|ba(I,M)| : M ∈ M}.

Finding a matchingM in I such that |bp(M)| = bp(I) is just one method

of trying to cope with the potential unsolvability of I. Alternative ap-

proaches have already been described in Secs. 4.3.4 and 4.3.6, where the

former section focuses on finding a maximum stable matching (that is, a

matching of maximum size such that the assigned agents are stable within

themselves). However such a matching may only be half the size of a max-

imum (cardinality) matching in I. Yet in many applications we seek to

assign as many agents as possible, and as discussed above, in order to sat-

isfy this property, in many cases a certain number of blocking pairs may be

sanctioned.

For example, suppose that r ≥ 1 and consider the sr instance Ir and

matchingsM1
r ,M

2
r as shown in Fig. 4.5. Since Ir is built up from r copies of

unsolvable sr instances with 4 agents, Tan’s algorithm is bound to construct

a matching M in Ir of size r (such as M1
r ). Any such matching M satisfies

|bp(Ir,M)| ≥ 2r. However M2
r is a matching in I such that |M2

r | = 2r and

|bp(Ir,M2
r )| = r. In particular M1

r is half the size of M2
r and admits twice

as many blocking pairs in Ir.
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In this section we review complexity and approximability results for

problems involving finding matchings with the minimum number of block-

ing pairs, given instances of sr and its variants. In Sec. 4.6.2 we present

hardness results for the minimisation problem, whilst in Sec. 4.6.3 we show

that the problem of finding a matching with exactly K blocking pairs is

fixed, ifK is a constant. In Sec. 4.6.4 we consider preference lists of bounded

length, and finally in Sec. 4.6.5 we discuss some open problems.

4.6.2 Hardness results

Define min bp sri to be the problem of finding, given an sri instance I, a

matching M in I such that |bp(M)| = bp(I) (min bp sr and min bp srt are

defined analogously; note that, if I is an sr instance, clearly M must assign

n −
(⌈

n
2

⌉

−
⌊

n
2

⌋)

agents, where n is the size of I). Also, define exact bp

sri to be the problem of deciding, given an sri instance I and an integer

K, whether I admits a matching M such that |bp(M)| = K (exact bp sr

and exact bp srt are defined analogously). Our first result, proved by

Abraham et al.[16], indicates that min bp sr is NP-hard and very difficult

to approximate.

Theorem 4.23 ([16]). min bp sr is not approximable within n
1
2
−ε, for

any ε > 0, unless P=NP, where n is the number of agents in a given

instance.

It also turns out that exact bp sr is a hard problem, as the next result

reveals.

Theorem 4.24 ([16]). exact bp sr is NP-complete.

We now turn to the case that ties may be present in the preference lists.

It turns out that, in this context, min bp srt may be even harder to

approximate than min bp sr.

Theorem 4.25 ([16]). min bp srt is not approximable within n1−ε, for

any ε > 0, unless P=NP, where n is the number of agents in a given

instance. The result holds even if all preference lists are complete, there is

at most one tie per list, and each tie is of length 2.

We now remark on the format of the inapproximability results presented

above for min bp sr and min bp srt. We implicitly assume that a given

instance I of min bp sr is unsolvable, so that bp(I) ≥ 1. Recall that the
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solvability or otherwise of I can be determined in O(m) time [306, 261],

where m is the number of acceptable pairs of agents in I. Hence bp(I) can

be regarded as the objective function for measuring performance guarantee.

On the other hand, given an instance I of min bp srt, we do not assume

that I is unsolvable, since the problem of deciding whether this is the case

is NP-complete [493, 321]. Hence possibly bp(I) = 0, and therefore we use

opt(I) to measure performance guarantee, where opt(I) = 1+bp(I). In fact

the proof of Theorem 4.25 in Ref. [16] shows that, given any ε > 0, it is

NP-hard to distinguish between the cases that I admits a stable matching,

and bp(I) ≥ n1−ε.

4.6.3 Matchings with a constant number of blocking pairs

In this subsection we consider exact bp sri. Let I be an sri instance and

let K ≥ 1 be a fixed constant. We give an O(mK+1) algorithm, due to

Abraham et al. [16], that finds a matching M in I such that |bp(I,M)| =
K, or reports that no such matching exists, where m is the number of

acceptable pairs of agents in I. Later, we show how to modify this algorithm

if we require that |bp(I,M)| ≤ K.

Let G = (A,E) be the underlying graph of I. The algorithm is based

on generating subsets B of edges of G, where |B| = K — these edges will

form the blocking pairs with respect to a matching to be constructed in a

subgraph of G. Given such a set B, we form a subgraph GB = (A,EB) of

G as follows. For each agent ai incident to an edge e = {ai, aj} ∈ B, if e is

to be a blocking pair of a matching M , it follows that {ai, aj} /∈ M and ai
cannot be assigned in M to an agent whom she prefers to aj in I. Hence

we delete {ai, aj} from EB, and also we delete {ai, ak} from EB for any ak
such that ai prefers ak to aj in I. If any such edge {ai, ak} is not in B, then

we require that {ai, ak} is not a blocking pair of a constructed matching

M . This can only be achieved if ak is assigned in M to an agent whom she

prefers to ai in I. Hence we invoke truncateak
(ai), which represents the

operation of deleting {ak, al} from EB, for any al such that ak prefers ai
to al in I. Additionally we add ak to a set P to subsequently check that

ak is assigned in M .

Having completed the construction of GB, we denote by IB the sri in-

stance with underlying graph GB and preference lists obtained by restrict-

ing the preferences in I to EB. By construction of GB, it is immediate that

any matching M in GB satisfies B ⊆ bp(I,M). To avoid any additional

blocking pairs in I, we seek a stable matching in IB in which all agents in
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Algorithm 4.2 Algorithm K-BP-SR [16]

Require: an sri instance I and an integer K
Ensure: return a matching M such |bp(M)| = K or “no matching with K block-

ing pairs exists”
1: for each B ⊆ E such that |B| = K do

2: EB := E; {GB = (A,EB) is a subgraph of G}
3: P := ∅;
4: for each agent ai incident to some {ai, aj} ∈ B do

5: delete {ai, aj} from EB;
6: for each agent ak such that ai prefers ak to aj in I do

7: delete {ai, ak} from EB ;
8: if {ai, ak} /∈ B then

9: truncateak
(ai);

10: P := P ∪ {ak};
11: end if

12: end for

13: end for

14: if there is a stable matching M in IB then

15: if every agent in P is assigned in M then

16: return M ;
17: end if

18: end if

19: end for

20: return “no matching with K blocking pairs exists”;

P are assigned. We apply Irving’s algorithm for sri [261] to IB — suppose

it finds a stable matching M in IB. If all agents in P are matched then

bp(I,M) = B, and hence |bp(I,M)| = K — thus we may return M and

halt. If some agents in P are unassigned in M then we need not consider

any other stable matching in IB , since Theorem 4.5.2 of Ref. [261] asserts

that the same agents are assigned in all stable matchings in IB. Hence (and

also in the case that no stable matching in IB is found), we may consider

the next subset B. If we complete the generation of all subsets B without

having returned a matching M , we report that no matching with the de-

sired property exists. The algorithm is displayed as Algorithm K-BP-SR

in Algorithm 4.2. The following theorem establishes its correctness and

complexity.

Theorem 4.26 ([16]). Given an sri instance I and a fixed constant K,

Algorithm K-BP-SR finds a matching with exactly K blocking pairs, or

reports that no such matching exists, in O(mK+1) time, where m is the

number of acceptable pairs of agents in I.
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Note that it is straightforward to modify Algorithm K-BP-SR so that it

outputs the largest stable matching taken over all subsets B — we may then

find a matching M such that (i) |bp(I,M)| = K, and (ii) M is of maximum

cardinality with respect to (i). This extension uses the fact that all stable

matchings in IB have the same size [261, Theorem 4.5.2], so that the choice

of stable matching constructed by the algorithm is not of significance for

Condition (ii).

Finally we remark that Algorithm K-BP-SR may easily be modified in

order to find a matching M such that bp(I,M) ≤ K: the outermost loop

iterates over all subsets B of E such that |B| ≤ K. Again, one can find a

maximum such matching if required. The time complexity of the algorithm

remains unchanged.

The above algorithm does not extend to the srt case unless P=NP, as

the next result shows.

Theorem 4.27 ([16]). exact bp srt is NP-complete for each fixed in-

teger K ≥ 0.

4.6.4 Bounded length preference lists

We now consider the case where the lengths of the preference lists in a

given sri instance are bounded above by some constant d ≥ 2. Define

min bp d-sri to be the restriction of min bp sri to such an instance. Biró et

al. [92] presented complexity and approximability results for min bp d-sri.

We begin with the following result, which concerns preference lists of length

at most 2. It turns out that this restriction is easily solvable in polynomial

time by constructing a stable partition.

Theorem 4.28 ([92]). min bp 2-sri is solvable in O(m) time, where m

is the number of acceptable pairs of agents in a given instance I. Moreover

bp(I) is equal to the number of odd parties of size ≥ 3 in a stable partition

in I.

On the other hand, when preference lists are of length at most 3,

min bp d-sri is NP-hard and not approximable within some c > 1 unless

P=NP.

Theorem 4.29 ([92]). min bp 3-sri is not approximable within 1017
1016 − δ,

for any δ > 0, unless P=NP.
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We now consider upper bounds for the approximability of min bp d-sri for

d ≥ 3. A straightforward 2d − 2 approximation algorithm follows from

upper and lower bounds for bp(I), which were established in Ref. [16]. In

order to describe these bounds, we require the following notation. Let C
denote the set of odd parties of length ≥ 3 in a stable partition Π in I.

Recall that C is a property of I and is independent of the particular choice

of Π by Theorem 4.7. Given Ci ∈ C, let di = minaj∈Ci
dG(aj), where dG(aj)

denotes the degree of vertex aj in the underlying graph G of I. Then the

following bounds for bp(I) hold:

Theorem 4.30 ([16]). Let I be an sri instance. Then

⌈ |C|
2

⌉

≤ bp(I) ≤
∑

Ci∈C

(di − 1).

Corollary 4.31 ([92]). For each d ≥ 3, min bp d-sri is approximable

within 2d− 2.

Proof. Let I be an instance of min bp d-sri. A simple approximation

algorithm achieving this performance guarantee is based on constructing a

stable partition Π in I, and modifying Π as follows. Let C be the set of

odd parties in Π of length ≥ 3. For each Ci ∈ C, delete from Π a vertex

of minimum degree in the underlying graph of I. Having done this, all

parties in Π are either of length 1 or of even length, and hence Π can be

decomposed into a reduced stable partition Π′ by Theorem 4.4. Π′ gives

rise to a matching M in I that implies the upper bound for bp(I) given

in Theorem 4.30 (see the proof of Lemma 3 in Ref. [16] for more details),

and hence |bp(I,M)| ≤ (d− 1)|C|. The lower bound given by Theorem 4.30

gives bp(I) ≥ |C|/2, which implies the result. �

By making a more careful choice of vertex to delete from each odd party

in Π, an improved approximation algorithm with performance guarantee

2d− 3 can be arrived at. This further improves to 2d− 4 in the absence of

an elitist odd party, which we now define.

Definition 4.32 ([92]). Let Π be a stable partition for an sri instance I.

An elitist odd party is an odd party P = (ai0 , ai1 , . . . , aik) in Π with k ≥ 2

such that Π(aij ) and Π−1(aij ) are the first and second entries, respectively,

of aij ’s preference list for 0 ≤ j ≤ k.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

4.7. Globally-ranked pairs 209

Theorem 4.33 ([92]). For each fixed d ≥ 3, min bp d-sri is approx-

imable within 2d − 3. If the instance contains no elitist odd party, this

bound improves to 2d− 4.

4.6.5 Open problems

Analogues of the problems studied in this section can be obtained if we

replace the requirement to minimise the number of blocking pairs with the

goal to minimise the number of blocking agents. It remains open to deter-

mine which of the results in this section carry over to the case that ba(I,M)

should be minimised for a given matching M , rather than bp(I,M), for a

given instance I of sr and its variants.

4.7 Globally-ranked pairs

4.7.1 Definitions and motivation for the srti-grp model

Let I be an instance of srti and let G = (A,E) be the underlying graph

of I. Then I is an instance of the Stable Roommates problem with Globally

Ranked Pairs (srti-grp) if there is a ranking function rank : E −→ R

such that, if e = {ai, aj} ∈ E and e′ = {ai, ak} ∈ E, then ai prefers aj to

ak if and only if rank(e) < rank(e′), and ai is indifferent between aj to ak
if and only if rank(e) = rank(e′).

A global ranking of the edges in the graph underlying an instance of

srti can be an appropriate model for a number of the applications de-

scribed in Sec. 1.4.6. For example, with reference to kidney exchange,

when two patient–donor pairs are matched with each other (in order to

swap donors), we are not certain if the swap can occur until expensive last-

minute compatibility tests are performed on the donors and patients. If an

incompatibility involving one of the donors and her recipient patient in the

exchange is identified, the swap is cancelled and the two patients must wait

for the next matching run. Since doctors can rank potential swaps by their

chance of success, and patients prefer swaps with better chances of success,

this is exactly the preference model of srti-grp.

Regarding the P2P file-sharing network example, the presence of a

master list of peers (according to properties such as download / upload

bandwidth, latency and storage capacity) gives rise to a global ranking

function as follows: an instance of srti-grp can be obtained by defining

rank({ai, aj}) to be rank(ai) + rank(aj), where {ai, aj} is any edge and

rank(ak) is the rank of agent ak in the master list.
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The remainder of this section is organised as follows. In Sec. 4.7.2,

we consider a problem model that is closely related to srti-grp. Then

in Sec. 4.7.3 we give algorithmic results for problems involving comput-

ing weakly stable and strongly stable matchings in instances of srti-grp.

Finally, in Sec. 4.7.4 we discuss related work.

4.7.2 Globally acyclic preferences

The generality of the srti-grp model can be demonstrated by defining a

second restriction of srti called the Stable Roommates problem with Glob-

ally Acyclic Preferences (srti-gap) [27]. Instances of srti-gap satisfy

the following characterisation test: given an arbitrary instance I of srti

with underlying graph G = (A,E), construct a digraph P (G), contain-

ing one vertex e for each edge e ∈ E, and an arc from e = {ai, aj} ∈ E

to e′ = {ai, ak} ∈ E if ai prefers ak to aj . For each e = {ai, aj} and

e′ = {ai, ak} in E, if ai is indifferent between aj and ak, merge vertices

e and e′. Note that a merged vertex may contain several original edge–

vertices and have self-loops. Then I is an instance of srti-gap if and only

if P (G) is acyclic.

Instances of srti-grp satisfy the srti-gap test, since any directed path

in P (G) consists of arcs with monotonically improving ranks, and so no

cycles are possible. In the reverse direction, given any instance of srti-

gap, we can derive a suitable rank function from a reverse topological sort

on P (G), i.e., rank(e) < rank(e′) if and only if e appears before e′. The

following proposition is clear:

Proposition 4.34 ([27]). Let I be an instance of srti. Then I is an

instance of srti-grp if and only if I is an instance of srti-gap.

srti-gap is a model that has practical applications in the context of P2P

networks — see Refs. [232, 429, 431] for more details.

4.7.3 Weakly and strongly stable matchings in srti-grp

In contrast to the general srti case, it turns out that necessary and sufficient

conditions for the existence of weakly stable and strongly stable matchings

can be given in terms of the ranks of the edges in the underlying graph. Let

I be an instance of srti-grp and let G = (A,E) be the underlying graph

of I. Let n = |A| and m = |E|. Without loss of generality we assume that

rank : E −→ {1, 2, . . .m}. For each i (1 ≤ i ≤ m), we define Ei to be the

set of edges with rank i, and E≤i to be the set E1 ∪ E2 ∪ . . . ∪ Ei.
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As well as modelling real-world problems, srti-grp is an important

theoretical restriction of srti. For, as described in Secs. 1.4.3 and 4.5.2,

it is well known that an instance I of srt need not admit a weakly stable

matching (even if I is an instance of sr) and moreover the problem of

deciding whether I admits a weakly stable matching is NP-complete. It

turns out that srti-grp has neither of these undesirable properties, as

demonstrated by the following lemma.

Lemma 4.35 ([27]). Let I be an instance of srti-grp and let G = (V,E)

be the underlying graph of I. Then M is a weakly stable matching in I if

and only if M ∩ E≤i is a maximal matching of E≤i, for all i (1 ≤ i ≤ m),

where m = |E| and E≤i are as defined above (1 ≤ i ≤ m).

Hence we can construct a weakly stable matching in O(n + m) time

by finding a maximal matching on rank–1 edges, removing the matched

vertices, finding a maximal matching on rank–2 edges, and so on.

Strongly stable matchings are also easy to characterise in srti-grp.

Lemma 4.36 ([27]). Let I be an instance of srti-grp and let G = (V,E)

be the underlying graph of I. Then M is a strongly stable matching in I if

and only if, for each i (1 ≤ i ≤ m), M ∩ Ei is a perfect matching of

{e ∈ Ei : e is not adjacent to any e′ ∈ M ∩ (E≤i\Ei)},
where m = |E|, and Ei, E≤i are as defined above (1 ≤ i ≤ m).

Of course, even E1 may not admit a perfect matching, and so strongly

stable matchings may not exist. However, we can find a strongly stable

matching, or prove that no such matching exists in O(
√
nm) time by using

the maximum matching algorithm of Micali and Vazirani for non-bipartite

graphs [451,577]. This improves on the best known running time of O(m2)

for general srti (see Sec. 4.5.3).

Lemmas 4.35 and 4.36 indicate that srti-grp can be “more tractable”

than sr. However, the possible non-existence of a strongly stable matching

motivates the search for weakly stable matchings with desirable properties.

A rank-maximal matching [318,371] includes the maximum possible number

of rank–1 edges, and subject to this, the maximum possible number of

rank–2 edges, and so on4. More formally, for this subsection only, define

4Note that this definition of rank-maximality in the context of srti-grp is based on
edge ranks, and is slightly different from the notion of rank-maximality that we define
in a more general srti instance in Sec. 8.2.5.
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the profile of a matching M as 〈p1, p2, . . . , pm〉, where pi is the number of

rank–i edges in M . Then a matching is rank-maximal if and only if its

profile is lexicographically maximum, taken over all matchings.

Recall from Lemma 4.36 that a strongly stable matching is perfect on

rank–1 edges, and subject to removing the matched vertices, perfect on

rank–2 edges, and so on. It is clear that a rank-maximal matching is

strongly stable, when strong stability is possible. If no strongly stable

matching exists, then a rank-maximal matching, which by Lemma 4.35 is

always weakly stable, seems a natural substitute. Irving et al. [318] gave

a polynomial-time algorithm for the problem of finding a rank-maximal

matching in an instance of hat. Abraham et al. [27] generalised this algo-

rithm to the srti-grp case, giving rise to the following result.

Theorem 4.37 ([27]). Let I be an instance of srti-grp with underlying

graph G = (A,E). Then a rank-maximal matching in I can be found in

time O(min(n + r∗, r∗
√
n)m), where n = |A|, m = |E| and r∗ is the rank

of the worst-ranked edge in a rank-maximal matching in I.

4.7.4 Related work

Several papers have focused on instances of srti-gap that arise from P2P

networks. In particular, Lebedev et al. [403] independently proved Lemma

4.35 by showing that every instance of srti-gap (and hence srti-grp by

Proposition 4.34) admits a weakly stable matching. Gai et al. [232] showed

that every instance of sri with a master list is an instance of srti-gap, but

the converse need not be true. They also considered instances of srti with

symmetric preferences (see Sec. 3.2.7). See also Refs. [233, 429, 430].

Arkin et al. [50] defined geometric srti, which is a restriction of srti-

grp in which the agents are points in R
d (for some fixed d ≥ 1), all agents

are mutually acceptable, and the ranking function maps a pair of agents

ai, aj to the Euclidean distance ||ai − aj ||d between them. The case in

which d = 1 (so-called single-peaked preferences) and there are no ties had

already been studied by Bartholdi and Trick [68], who showed that, for a

given instance of this problem, a unique stable matching exists and can be

found in O(n) time; here n is the number of agents in a given instance.

For the case that d ≥ 2, Arkin et al. proved that (i) there is an O(n log n)

algorithm for finding a super-stable matching or reporting that none exists;

(ii) there is an O(n1.5) algorithm for finding a strongly stable matching or

reporting that none exists (the time complexity is O(n1.19) if d = 2), and



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

4.8. Other extensions of sr 213

(iii) a weakly stable matching always exists and can be found in O(n log n)

time.

4.8 Other extensions of sr

4.8.1 Introduction

In this section we survey algorithmic results for a range of problems, each

of which extend the basic sr problem model in some way. The problems

that we consider include the so-called Stable Roommates problem with

Forbidden Pairs (Sec. 4.8.2), Stable Crews problem (Sec. 4.8.3), Stable

Fixtures problem (4.8.4), Stable Multiple Activities problem (Sec. 4.8.5),

Stable Allocation problem (4.8.6), Stable Roommates problem with Choice

Functions (4.8.7) and Coalition Formation Games (Sec. 4.8.8).

4.8.2 Stable Roommates problem with Forbidden Pairs

The Stable Roommates problem with Forbidden pairs (srf) [216] is an ex-

tension of sri in which an instance I additionally involves a set F ⊆ E of

forbidden pairs , where G = (A,E) is the underlying graph of I. A matching

M in I is stable if (i) M is stable in the underlying sri instance obtained

from I by deleting the forbidden pairs, and (ii) M ∩F = ∅. Hence although
a stable matching in I must contain no forbidden pair, it is nevertheless

possible for a forbidden pair to be a blocking pair of a given matching.

It turns out that srti under super-stability and srf are closely related:

they are polynomial-time reducible to one another. We will describe the

reduction from the former problem to the latter; before doing so, we require

the following lemma, proved by Fleiner et al. [216].

Lemma 4.38 ([216]). Let I be an instance of srti and let A be the set

of agents in I. Let I ′ be any instance of sri obtained from I by breaking

the ties. For any ai ∈ A, let Si be the set of stable partners of ai in I ′.

Now suppose that {aj , ak} ⊆ Si, where ai is indifferent between aj and ak
in I, and ai prefers aj to ak in I ′. Then aj is not a super-stable partner of

ai in I.

Proof. Suppose that M is a super-stable matching in I containing

{ai, aj}. Then M is stable in I ′ by Lemma 4.21. Also by assumption

there exists a matching M ′ containing {ai, ak} that is stable in I ′. As ai
prefers aj to ak in I ′, it follows by Lemma 4.3.9 of [261] that ak prefers
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M ′(ak) = ai to M(ak). Hence ak either prefers ai to M(ak) in I or is

indifferent between them. Also by assumption ai is indifferent between aj
and ak in I, so {ai, ak} blocks M in I, a contradiction. �

We now describe the reduction from srti under super-stability to srf, due

to Fleiner et al. [216].

Theorem 4.39 ([216]). Let I be an instance of srti. Then we may con-

struct in polynomial time an instance J of srf such that there is a 1–

1 correspondence between the super-stable matchings in I and the stable

matchings in J .

Proof. Let G = (A,E) be the underlying graph of I, where n = |A|
and m = |E|. We may as well assume that I admits some super-stable

matching M , for if not then we can let J be any unsolvable instance of sr

and the result trivially holds. Let I ′ be an instance of sri obtained from

I by breaking the ties arbitrarily. For each agent ai ∈ A, let Si be the

set of stable partners of ai in I ′ (by Theorem 4.1, all such sets Si can be

constructed in O(nm) overall time).

We construct a set F of forbidden pairs and a second instance I ′′ of

sri, obtained from I by breaking the ties, as follows. Let ai ∈ A, and let T

be a tie in ai’s preference list in I. If T contains no agent from Si, break

T arbitrarily in I ′′. Otherwise, let aj be the worst agent in Si, according

to ai’s preferences in I ′, that belongs to T (by Lemma 4.38, aj is the only

possible super-stable partner of ai in I from T ). Break T in I ′′ such that

ai prefers ak to aj , for all ak ∈ T \{aj}. Additionally, add {ai, ak} to F for

each such ak. Having repeated this for each agent ar ∈ A, and for each tie

in ar’s preference list in I, we define J by taking I ′′ together with the pairs

in F . We claim that a matching M is super-stable in I if and only if M is

stable in J .

To see this, suppose that M is super-stable in I. Then M ∩ F = ∅ by

Lemma 4.38. Hence, and by Lemma 4.21, M is stable in J . Conversely let

M be stable in J , where M ∩ F = ∅. Suppose that {ai, aj} blocks M in

I. If ai is indifferent between aj and M(ai) in I, then by construction ai
prefers aj to M(ai) in J , since {ai,M(ai)} /∈ F . A similar remark holds

for aj , and hence {ai, aj} blocks M in J , a contradiction. �

We now consider the reduction in the opposite direction to that de-

scribed by Theorem 4.39. Fleiner et al. [216] modified a reduction of

Cechlárová and Fleiner [122] to show that, given an srf instance I, we
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can construct in O(m) time an instance J of srt such that a stable match-

ing in I can be derived in O(m) time from a super-stable matching in J , and

vice-versa, where m = |E|. Given that we can find a super-stable matching

in J , or report that none exists, in O(m) time (see Theorem 4.22), it follows

that we can find a stable matching in I, or report that none exists, in the

same time complexity.

A more powerful reduction [216] transforms an instance I of the more

general Stable Roommates problem with Preference posets and Forbidden

pairs (srpf) to an instance J of 2-sat (this reduction was mentioned in

Sec. 3.4.5 for the special case that I is an instance of smti under super-

stability). In the srpf case, J can be constructed from I in O(nm) time,

and as J requires O(m) space, it follows that there is a succinct certificate

for the unsolvability of I that can be generated in O(nm) time, and repre-

sented using O(m) space, where n = |A|. Moreover the reduction implies

an O(nm) algorithm for finding a super-stable matching in I or reporting

that none exists.

Other consequences of the reduction are as follows. A minimum regret

super-stable matching in I can be found in O(nm) time. Also all the super-

stable pairs in I can be found in O(nm) time, whilst there is an algorithm

to list all the super-stable matchings in I: the first such matching can be

output in O(nm) time, and each subsequent super-stable matching can be

output in O(n) time [216].

Tighter complexity bounds for the above problems, plus an algorithm

for finding an egalitarian super-stable matching, exist in the case that I

is an instance of the Stable Marriage problem with Preference posets and

Forbidden pairs (smpf) — see Ref. [216] for more details.

A direct algorithm for finding a super-stable matching or reporting that

none exists, given an instance I of srpf, is described in Ref. [217]. This

algorithm has O(m(n +m)) complexity and avoids the need to transform

I to a 2-sat instance.

We close this subsection by mentioning a problem that is in some sense

“opposite” to srf, namely the Stable Roommates problem with FRee pairs

(srfr) [123]. An instance of this problem is an sri instance I that addition-

ally involves a set F ⊆ E of free pairs, where G = (A,E) is the underlying

graph of I. If a pair of agents is free then this pair can belong to a stable

matching (though is not obliged to) but cannot be a blocking pair. The in-

tuition behind this definition is that, in some practical applications it may

be the case that certain pairs can be identified that cannot lead to a given

matching being undermined in practice, since the agents involved only have
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partial information about one another. Thus the set of potential blocking

pairs is reduced, which increases the likelihood of a stable matching existing

(see also Sec. 2.10.9). Nevertheless, Cechlárová and Fleiner [123] showed

that, in contrast to the case for srf, the problem of determining whether

an instance of srfr admits a stable matching is NP-complete.

4.8.3 Stable Crews problem

The Stable Crews problem (sc) [121] is a generalisation of sri in which each

agent ai has one of two possible roles in a given matching M for a given

instance I. If ai has role k (k ∈ {1, 2}) in M then this is denoted by aki ;

note that the notion of role is dependent on M and not I. For example role

1 might be “driver” and role 2 might be “navigator” for a car journey. A

matching M is a set of pairs of mutually acceptable agents with roles such

that each agent appears in at most one pair, and each pair contains exactly

one agent in each role, i.e., if {aki , alj} ∈ M then k = 3 − l. Each agent

has a strictly-ordered preference list over the others according to the roles

that they may have in a given matching, for example ai may prefer aj as a

navigator to aj as a driver.

Based on this extended notion of preference, Cechlárová and Ferková

[121] defined an appropriate notion of stability. They showed that sr is

essentially a special case of sc in the sense that, given an instance I of

sr, one may construct in polynomial time an instance J of sc such that

the stable matchings of I and J are in 1–1 correspondence. The main

result of the paper, however, is an O(n2) algorithm for finding a stable

matching or reporting that none exists, given an instance of sc, where n is

the number of agents. This algorithm is an extension of Irving’s algorithm

for sr [306] that uses an extended notion of a rotation, together with an

extra step involving the elimination of so-called double favourites . Finally,

the authors show that a result analogous to Theorem 1.19 holds for sc: that

is, for a solvable instance I, the same agents are unassigned in all stable

matchings in I.

4.8.4 Stable Fixtures problem

The Stable Fixtures problem (sf) [330] is an many–many extension of sri

in which each agent ai has a capacity ci ≥ 1. This problem can also be

regarded as a non-bipartite extension of hr. Indeed, it is straightforward

to adapt the notation and terminology defined for hr in Sec. 1.3.2 to the sf



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

4.8. Other extensions of sr 217

a1 : a2 a3 a4 c1 = 2
a2 : a1 a3 a4 c2 = 2
a3 : a1 a2 a4 c3 = 2
a4 : a1 a2 a3 c4 = 2

Fig. 4.6 An instance of sf

context, obtaining in particular definitions of a matching and stability in

an sf instance. The problem name stems from a practical situation where

the agents are players (or teams) who are to play against one another

in a tournament. Each player ranks their potential opponents in order of

preference, and the task is to construct a set of fixtures , consisting of distinct

matches (each involving two players, where the number of matches that a

player is involved in may be more than one but cannot exceed its capacity),

that is stable. Another application for sf comes from P2P networking

[430, 253, 254].

One curious property of sf is the following. Suppose that I is an instance

I of sf with n = 2k players (for some k ≥ 1) where all preference lists are

complete and each player has a capacity of c, for some c (1 ≤ c ≤ 2k − 1).

If c = 1, clearly I is an instance of sr and any stable matching has size

k. For general c > 1 we might expect any stable matching to be of size

ck. However this is not the case, as the example sf instance in Fig. 4.6

illustrates: here k = 2, c = 2 and any stable matching has size 3.

Irving and Scott [330] described an O(m) algorithm for finding a stable

matching or reporting that none exists, given an sf instance I where m

is the number of acceptable pairs of agents. Their algorithm is again an

extension of Irving’s algorithm for sr [306] and involves the elimination of

rotations, given a rotation definition that is adapted appropriately to the

sf context. They also showed that an analogue of sorts of Theorem 1.11

holds in the sf context. In particular, for a given instance I of sf, (i)

every player has the same number of assignees in all stable matchings in I,

(ii) any player that is undersubscribed in one stable matching has exactly

the same set of assignees in all stable matchings in I, and (iii) all stable

matchings in I have the same size.

Scott [523] studied the extension of sf where preference lists may include

ties (referred to as sft — the Stable Fixtures problem with Ties). He

formulated three notions of stability that extend the definitions given in the

sr context (see Sec. 4.5). The problem of deciding whether a weakly stable

matching exists, given an sft instance, is NP-complete — this follows by
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restriction, given that the corresponding problem is NP-complete for srt

(see Sec. 4.5.2). By constrast, Scott [523] described an O(m) algorithm

for finding a super-stable matching or reporting that none exists, given an

instance of sft. It is an open question as to whether the corresponding

problem for strong stability is polynomial-time solvable or NP-hard.

Note that sf is a very general stable matching problem. Clearly sr is the

special case of sf in which each agent has capacity 1. Alternatively, we may

consider restrictions of sf in which the underlying graphG is bipartite. This

gives rise to many–many bipartite stable matching problems (see Sec. 5.4).

Its restriction in which the capacity of each vertex on one side of G is 1 is

hr (Sec. 1.3).

Motivated by P2P networking, Georgiadis and Papatriantafilou [253,

254] studied a method for coping with sf instances that do not admit a

stable matching. They defined a notion of satisfaction for each agent ai
with respect to a given matching M — this takes into account ai’s capacity,

the number of assignees of ai in M , the ranks of these assignees in ai’s

preference list, and the length of ai’s list. The authors then considered

max sf sat, the problem of finding a matching that maximises the overall

satisfaction of the agents in a given sf instance relative to this definition.

They presented distributed approximation algorithms for max sf sat in

a static and dynamic setting. Note that max sf sat is not known to be

NP-hard.

4.8.5 Stable Multiple Activities problem

The Stable Multiple Activities problem (sma) [122] is a generalisation of sf

in which the underlying graph may have parallel edges. This represents a

practical situation in which players may form multiple partnerships accord-

ing to different sports activities: for example, ai might play a match with

aj for each of tennis, chess and badminton. A solution to an instance of

this problem is referred to as a stable b-matching [122]. sma has also been

referred to in the literature as the stable b-matching problem [212, 104].

Cechlárová and Fleiner [122] showed that there is a polynomial-time

reduction from an sma instance I to an sr instance J such that a stable

b-matching in I corresponds to a stable matching in J , and vice versa,

however the mapping is not injective in general. The authors described

an O(m2) algorithm for finding a stable b-matching or reporting that none

exists, given an sma instance, where m is the number of edges in the under-
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lying multigraph. Again, this algorithm is an extension of Irving’s algorithm

for sr [306]. However, unlike Irving’s two-phase approach, the algorithm of

Cechlárová and Fleiner has only a single phase.

A two-phase algorithm for sma was described by Borbel’ová and

Cechlárová [104]. The first phase involves the deletion of certain edges

from the underlying multigraph so as to obtain an instance that satisfies

the so-called first–last property. This property is a generalisation of the

notion of a stable table that is the outcome of phase 1 of Irving’s algorithm

for a solvable instance of sr [306] (see also Chapter 4 of Ref. [261]). The

second phase of the algorithm of Borbel’ová and Cechlárová involves the

elimination of rotations in the sma context. The concept of a rotation here

extends the definition in the sr context (see Sec. 1.4.4) and were first defined

in the sma setting by Cechlárová and Fleiner [122]. The main advantage

of the two-phase approach for sma is that the algorithm’s complexity is

O(m), improving on the previous algorithm in Ref. [122]. Borbel’ová and

Cechlárová [104] also proved that each player has the same number of as-

signees in every stable b-matching for a given sma instance. Note that a

two-phase O(m) algorithm for sma was independently formulated by Ando

and Kanemaru [45].

In subsequent work, Borbel’ová and Cechlárová [106] studied rotations

in the sma context in greater depth. They proved an analogue of Theorem

1.23 in the context of an sma instance I and used it in order to derive

efficient algorithms for finding all stable pairs, a minimum regret stable

b-matching, and an egalitarian stable b-matching in the case that the un-

derlying graph of I is bipartite.

4.8.6 Stable Allocation problem

The Stable Allocation problem (sa) (or Ordinal Transportation problem)

was introduced by Bäıou and Balinski [59]. In its most general form, as

defined by Biró and Fleiner [82], an instance involves a multigraph G =

(V,E), where each vertex v ∈ V has a linear order ≺v over its adjacent

edges. Also there are functions b : V −→ R
+, representing the bounds of

the vertices, and c : E −→ R
+, representing the capacities of the edges. A

function x : E −→ R
+ is an allocation if x(v) ≡ ∑

v∈e x(e) ≤ b(v) for all

v ∈ V and 0 ≤ x(e) ≤ c(e) for all e ∈ E. A vertex v ∈ V is saturated if

x(v) = b(v) and similarly an edge e ∈ E is saturated if x(e) = c(e). An edge

e ∈ E is dominated at a vertex v ∈ E if
∑

e�vf
x(f) = b(v). Allocation x is

stable if, given an unsaturated edge e ∈ E, there exists a saturated vertex
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v ∈ e such that e is dominated at v. Bäıou and Balinski [59] defined the

restriction of sa in which G is bipartite.

sa is a very general stable matching problem: as observed by Biró and

Fleiner [82], its various restrictions encompass many of the stable matching

problems already introduced in this book. We begin by considering the

Integral Stable Allocation problem (isa), in which x(e) ∈ Z for all e ∈ E.

The special case of isa in which c(e) = 1 for all e ∈ E is sma (Sec. 4.8.5).

If, in addition, G is simple, we obtain sf (Sec. 4.8.4). Restrictions of sf

(e.g., where b(v) = 1 for all v ∈ V , and/or G is bipartite, have already

been noted in Sec. 4.8.4. Finally, the restriction of sma in which b(v) = 1

for all v ∈ V and each pair of vertices has at most two parallel edges is sc

(Sec. 4.8.3).

Bäıou and Balinski [59] described an algorithm for sa which has ex-

ponential complexity in the worst case. They also described an inductive

algorithm for the special case of sa in which G is bipartite.

Dean and Munshi [162] showed that Bäıou and Balinski’s algorithm for

sa in bipartite graphs can be implemented to run in O(nm) time without

the use of sophisticated data structures, where n = |V | and m = |E|. With

the aid of such structures, Dean and Munshi proved that this algorithm can

be implemented to run in O(m log n) time. They also showed how to solve

general sa (in non-bipartite graphs) in the same time complexity, with high

probability. For isa in the case of non-bipartite graphs, Biró and Fleiner [82]

gave a weakly polynomial-time algorithm that runs in O(m3 logB) time,

where B = max{b(v) : v ∈ V }. Further, Dean and Munshi [162] proved that

a weighted version of sa in bipartite graphs can be solved in polynomial

time, whilst there is a 2-approximation algorithm for the corresponding

problem in the non-bipartite case, which is NP-hard. Finally, Dean and

Swar [163] considered a variant of sa involving edge multipliers.

4.8.7 Stable Roommates problem with Choice Functions

The Stable Roommates problem with Choice Functions (srcf) [215] is

a many–many extension of sri that can be defined as follows. An in-

stance comprises a graph G = (A,E), together with a function Chai
:

P(N(ai)) −→ P(N(ai)), for each agent ai ∈ A, where N(ai) denotes the

vertices adjacent to ai in G and P(X) denotes the power set of X , for any

X ⊆ V .

The function Chai
is called the choice function for agent ai and intu-

itively maps any subset X of N(ai) to the set of agents that ai chooses
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from X . In an instance of sri, each agent ai ∈ A has a linear order ≺ai

over the agents in N(ai), and thus for any X ⊆ N(ai), Chai
(X) is equal to

the minimal element of X according to ≺ai
. In this case Chai

is referred

to as a linear choice function.

In general, a natural and commonly-studied property of choice functions

is substitutability [374,514]. For any ai ∈ A, Chai
is said to be substitutable

if, for any set X ⊆ N(ai) and for any two distinct agents aj , ak in X ,

aj ∈ Chai
(X) implies aj ∈ Chai

(X\{ak}). Roughly speaking, this means

that if ai chooses aj from X then ai continues to choose aj even if some

other options in X become unavailable.

Now let M ⊆ E. We say that M is individually rational if, for each

ai ∈ A, Chai
(M(ai)) = M(ai), where M(ai) denotes the set of neighbours

of ai in M (M(ai) is empty if there are no edges of M incident to ai).

Intuitively, the individual rationality of M guarantees that no agent ai
would prefer to lose any member of M(ai). A pair {ai, aj} ∈ E is blocking

if aj ∈ Chai
(M(ai) ∪ {aj}) and ai ∈ Chaj

(M(aj) ∪ {ai}). Intuitively, a

blocking pair signifies a situation in which both ai and aj would prefer to

augment their existing partnerships by choosing each other. We say that M

is a stable partnership if M is individually rational and admits no blocking

pair. In the case where Chai
is a linear choice function, for each ai ∈ A, the

definition of a stable partnership coincides with that of a stable matching,

and thus sri is a special case of srcf.

Fleiner [215] defined a choice function to be increasing if, for any agent

ai ∈ A and for any subsets X and Y of N(ai), we have Y ⊆ X implies

that |Chai
(Y )| ≤ |Chai

(X)|. Intuitively this means that, relative to Y ,

if some additional options become available, then the set that ai chooses

(from the superset X of Y ) will be at least as large as the set that ai would

choose from Y . Fleiner showed that, for srcf instances with increasing

and substitutable choice functions, there is an efficient algorithm for find-

ing a stable partnership or reporting that none exists. (In fact, Fleiner’s

algorithm can be used to construct a stable half-partnership, which is a

generalisation of a stable half-matching (see Sec. 4.3.5), given an arbitrary

instance of srcf.) By contrast, for general substitutable choice functions,

he showed that the problem of deciding whether a stable partnership exists

is NP-complete.

The bipartite version of srcf with substitutable preferences is solvable

in polynomial time — see Sec. 5.4.4 for more details.
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4.8.8 Coalition Formation Games

The Coalition Formation Game (cfg) [171, 66, 264] is an extension of sri

in which the set of agents A is to be partitioned into coalitions (i.e., sets

of arbitrary size) subject to a stability requirement. A distinction between

cfg and sri is that, in the latter case, coalitions must be of size at most 2.

cfg has also been referred to as a Hedonic Game or as the Stable Partition

problem in the literature (see Refs. [264, 120] for more details). However

we note that the latter terminology conflicts with the concept of a stable

partition, as defined in Sec. 4.3.

The different types of preference structures for agents are categorised

into two main groups in Ref. [120]: (i) each agent ai ranks in (not necessarily

strict) order of preference a list of coalitions (to which ai would potentially

belong), and (ii) each agent ranks in order of preference a list of other agents

(again, ties are permitted in the preference lists). Problems in model (i) in

particular have been referred to as Hedonic Games [102, 65]. A drawback

with this model from a computational point of view is that, as discussed

in Ref. [126], a representation of the preference structure inherent in an

instance of a Hedonic Game would, in general, have a space requirement

that is super-polynomial in the number of agents.

Turning to model (ii), problems in this category have been most com-

monly referred to in the literature as Coalition Formation Games or Stable

Partition problems. In order for an agent to decide between two coalitions

that she may be involved in, it is necessary to extend the notion of prefer-

ence over individual agents to preference over coalitions. Various methods

for doing this have been defined in the literature, including so-called B-

preferences , W -preferences , BW - and WB-preferences [125, 131, 126–128].

Other methods are surveyed in Refs. [264, 120].

Suppose that there is a suitable definition of an agent’s preferences over

coalitions. Subject to this, and given a partition M of A, we define a set

of agents A′ to be blocking if each agent ai ∈ A′ prefers A′ to M(ai), the

coalition containing ai in M . Similarly, A′ is weakly blocking if no agent

ai ∈ A′ prefers M(ai) to A′, and some agent aj ∈ A′ prefers A′ to M(aj).

The relevant stability concepts can now be defined as follows. A partition

M is defined to be a core partition if M admits no blocking coalition, whilst

M is a strong core partition if M admits no weakly blocking coalition.

The various computational problems that arise in this setting involve

determining whether a given partition is in the core or strong core, deciding

whether a core or strong core partition exists, and finding one if so, and
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describing the structure of core or strong core partitions. Variants of the

problems arise when the size of the coalitions is bounded [129], and/or when

the order that the agents appear in a given coalition is important [124, 80,

129]. These restrictions are relevant in the context of kidney exchange (see

Sec. 1.4.6): here every coalition corresponds to a cycle (ai0 , ai1 , . . . , air−1
),

where each aij corresponds to a patient–donor pair (pij , dij ), and the cycle

represents the transplantation of a kidney from donor dij to patient pij+1

(0 ≤ j ≤ r − 1 and addition is taken modulo r). Since all operations in a

cycle must take place simultaneously, cycles should be as short as possible

for logistical reasons. Further details regarding what is known about these

questions for a range of preference models are given in Refs. [264, 120].

We close this section by remarking that a number of desirable properties

involving partitions in a cfg instance such as Nash-stability, individual

stability and contractual individual stability (see Ref. [264] for definitions

of these terms) have recently been studied in the context of smti and srti

instances by Aziz [54] from an algorithmic point of view.

4.9 Conclusions and open problems

The wealth of results for sr and its variants surveyed in this chapter in-

dicates that over the last 25 years this problem has, in some sense, been

“tamed” — this is in stark contrast to the situation during the 1960s and

1970s when the problem had something of a mysterious nature. During

this time, the only tangible observation was due to Gale and Shapley [235],

who gave an example to show that an instance may be unsolvable, and this

prompted Knuth [394] to ask whether the problem of deciding whether a

stable matching exists, given an sr instance, might be NP-complete. This

was of course later proved not to be the case by Irving [306].

Nevertheless, despite the substantial advances that have been made

since Irving’s paper, a number of intriguing open questions remain. These

have been variously stated at different points throughout the chapter, but

we gather some of the most significant ones together as follows:

• Can a tighter asymptotic upper bound for the solvability probability of

a random sr instance be found? As described in Sec. 4.2.1, the best

current upper bound is about 0.82 [482], but empirical evidence suggests

that this bound is not likely to be very tight.

• Is there a polynomial-time reduction from a solvable instance I of sr

to an sm instance J such that there is a 1–1 correspondence between
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the stable matchings in I and J? As mentioned in Sec. 4.2.2, Dean

and Munshi [162] have given a partial answer to this question, but their

reduction is not in the “true spirit” of what Gusfield and Irving had

intended.

• Is there an Ω(n2) lower bound for the problem of determining whether a

given sr instance with n agents is solvable? As mentioned in Sec. 4.2.3,

only an answer to the decision problem is required, and not an actual

stable matching if one does exist.

• The concepts of rank-maximality and stability can be combined to define

the notion of a rank-maximal stable matching , given an instance of sri.

(That is, given a solvable sri instance I, find a stable matching in which

the maximum number of agents obtain their first choice, and subject to

this, the maximum number of agents obtain their second choice, and so

on, among all stable matchings in I.) A rank-maximal stable matching is

formally defined in Sec. 8.2.4 in the smi context and it is straightforward

to adapt that definition to the sri case (using the definition of rank-

maximality from Sec. 8.2.5). In Sec. 8.2.4, we note that the problem of

finding a rank-maximal stable matching in an instance of smi is solvable

in polynomial time. Is the same true in the sri context?

• In Sec. 2.10.3 we considered the problem rationalizability in the sm

context. One can also consider this problem in the sr case. That is, given

a set M of matchings involving n agents, the problem is to determine

whether there is an sr instance I that admits a set of stable matchings S
such thatM ⊆ S. To the best of the author’s knowledge, it is unknown as

to whether this problem is solvable in polynomial time or NP-complete.

• An instance I of srfmay not admit a stable matching, yet the underlying

sr instance J , obtained by omitting the forbidden pairs in I, may be

solvable (see Sec. 4.8.2). In such a setting, what is the complexity of

finding a stable matching in J that has the minimum number of forbidden

pairs in I?

• What is the complexity of the problem of finding a strongly stable match-

ing or reporting that none exists, given an instance of sft (see Sec. 4.8.4)?
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Further stable matching problems

5.1 Introduction

In this chapter we focus on matching problems with preference lists, not

already considered in the preceding chapters, where the solution criterion

in each case involves some stability property. Satisfying such a property

invariably involves establishing the absence of a blocking pair (or coalition

of agents of size two or greater) who would prefer to be assigned to one

another (or, in some cases, to one another’s partners) than remain with

their partners in the given matching. In some cases the notion of a blocking

pair or coalition is closely based on classical (Gale–Shapley) stability, with

the definition suitably modified and/or extended to fit the problem context.

However in other cases the definition is rather different (this is perhaps best

illustrated by exchange-stability, as defined below), though the satisfaction

of such a blocking pair or coalition still represents an overall improvement

for the agents concerned.

Many of the problems that we consider are extensions of hr motivated

by practical applications, with suitably amended stability criteria. We also

study three-dimensional extensions of sm and sr that have received atten-

tion in the literature. Furthermore, we describe exchange-stability, which

is in some sense orthogonal to classical stability, in the sm and sr contexts

— this criterion involves the absence of coalitions of agents who envy one

another’s partners. Again, our emphasis is on algorithmic results for the

problems covered in this chapter, though structural results are also impor-

tant as they often impact on a problem’s algorithmic behaviour.

The problems that we consider are as follows. In Sec. 5.2, we focus on

variants of hr involving lower and common quotas. A lower quota for a

hospital indicates the minimum number of assignees that it requires in a

225
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matching in order to be viable. This is a counterpart to a hospital’s upper

quota, which we have previously referred to as its capacity. We describe

two models for hr with lower quotas that have been considered in the

literature. Common quotas arise when a group of hospitals has a common

upper bound on the number of residents that may be collectively assigned

to them. We also study a variant of hr in which each hospital classifies

its acceptable residents into (possibly overlapping) categories, with each

category having a lower and upper quota.

An extension of hr that has important practical applications occurs

when couples supply joint preferences over pairs of hospitals (that are typ-

ically geographically close to one another) so that any matching respects

these joint lists in a precise sense. Unfortunately a stable matching need

not exist in this context, and furthermore the problem of deciding whether

such a matching exists is NP-complete even in some highly restricted cases.

Nevertheless some restrictions of the general problem do turn out to be

solvable in polynomial time. We discuss results for hr with couples in

Sec. 5.3.

We have seen that hr is a many–one extension of sm. It is natural, then,

to consider the many–many extension of hr — in the literature this many–

many bipartite stable matching problem has been presented in the context

of matching workers to firms, where each agent can have multiple assignees

(up to some fixed capacity). Two basic models have been considered in

the literature: firstly when agents have preferences over individual agents

from the other set, and secondly when agents rank in order of preferences

subsets of agents that constitute their entire set of potential assignees in a

given matching. The latter case has an obvious drawback, namely that the

length of a given agent’s preference list need not be polynomially-bounded

in the number of agents. Sec. 5.4 discusses these two formulations of the

many–many bipartite stable matching problem in greater detail. (Note that

many–many generalisations of sr were considered in Sec. 4.8.4, Sec. 4.8.5

and Sec. 4.8.6.)

Another generalisation of hr is motivated by the problem of allocating

students to projects in a university department. Each project is offered

by some lecturer, and both projects and lecturers have capacities indicat-

ing their maximum number of assignees. Students rank projects in order

of preference, whilst lecturers may rank in preference order either their

projects, or the students who find their projects acceptable, or both. We

thus obtain different models for this variant of hr, with different structural

and algorithmic properties. These models are described in Sec. 5.5.
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Three-dimensional versions of sm and sr have been considered in the

literature. In the three-dimensional extension of sm we have three disjoint

sets of agents rather than two (Knuth [394] suggested that men, women

and dogs could be the categories of agents involved) and the task is to form

triples of agents (each containing a member from each of the three disjoint

sets) that are stable in a particular sense. The three-dimensional version of

sr involves a set of agents that is some multiple of 3 in cardinality, and the

task is to form either unordered or ordered triples of these agents so as to

again satisfy some stability property. For many of these three-dimensional

stable matching problems, a stable matching need not exist and the problem

of deciding whether one does exist is NP-complete. We survey results for

three-dimensional stable matching problems in Sec. 5.6.

In Sec. 5.7 we study variants of sm and sr where the solution criterion

for the particular matching that we seek involves exchange-stability rather

than classical stability. Informally, if a matching is exchange-stable then

no two agents can improve by swapping their partners. The concept can

be generalised to the case where we seek a matching in which no coalition

of agents can improve by swapping their partners in a cyclic fashion. It

is even possible to combine exchange-stability with classical stability, with

some interesting algorithmic consequences.

Two other stable matching problems are considered in Sec. 5.8. In

Sec. 5.8.1, we study the problem of finding a matching in a given sm or sr

instance that is stable with respect to both the original preference lists and

the reverse of these. In Sec. 5.8.2 we focus on a variant of sr in which a

matching must be robust against blocking cycles of length 2 or more. The

stability concept here is subtly different from exchange-stability, and has

applications to kidney exchange.

Finally, in Sec. 5.9 we outline a selection of open questions that are

collected together from the problems considered in this chapter.

5.2 hr with lower and common quotas

5.2.1 Introduction

In the classical Hospitals / Residents problem [235,261,514], each hospital

has a capacity, or upper quota, limiting its number of assignees from above.

However in many practical applications, a hospital might have a lower quota

[84, 291, 275, 218], indicating that the training programme that it offers is

not viable unless it has a given minimum level of participation. This leads
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to the Hospitals / Residents problem with Lower Quotas (hr-lq). We

consider two formulations of hr-lq, denoted hr-lq-1 and hr-lq-2, that

arise in the presence of lower quotas.

The first model, hr-lq-1, studied by Biró et al. [84], allows a given

hospital to be either open (meaning that its number of assignees lies between

the lower and upper quotas) or closed (implying that it has no assignees).

We define this problem formally and discuss some associated complexity

results in Sec. 5.2.2. In the second model, considered by Hamada et al.

[275], no hospital is allowed to be closed, and in a feasible matching every

hospital must meet its lower quota (with respect to its number of assignees).

Of course this implies in general that a feasible matching need not exist,

though Hamada et al. place some restrictions on a given instance of the

problem to guarantee the existence of such a matching. We define the

second model (hr-lq-2) formally and present some algorithmic results for

it in Sec. 5.2.3.

Another generalisation of hr arises when groups of hospitals impose

common quotas , limiting (from above) the number of residents that may

be collectively assigned to them. We then obtain the Hospitals / Residents

problem with Common Quotas (hr-cq), as studied by Biró et al. [84].

Motivation for this variant comes, for example, from the Japan Res-

idency Matching Program (JRMP), the matching scheme for allocating

medical students to hospitals in Japan [596, 354, 355]. Here, in common

with medical matching programmes in many other countries, the Japanese

government was concerned about the geographical distribution of residents

assigned to hospitals, and in particular the shortage of assignees to rural

hospitals [354,355]. In an attempt to combat this, regional caps were intro-

duced, which limit the number of residents collectively assigned to hospitals

in a given prefecture, the intention being that more residents will then dis-

sipate to rural areas.

We define hr-cq formally in Sec. 5.2.4. As is the case with the introduc-

tion of lower quotas, the presence of common quotas leads to NP-hardness

for the problem of finding a stable matching (or reporting that none ex-

ists). However as we will illustrate, if the sets of hospitals which collec-

tively have common quotas satisfy a certain natural structural condition, a

stable matching always exists and can be found in polynomial time. More-

over in these circumstances the stable matchings have some nice structural

properties.

Another extension of hr that involves lower and common quotas (albeit

with a different manifestation) is the Classified Stable Matching problem,
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as introduced by Huang [291]. This is a generalisation of hr in which resi-

dents are classified by the hospitals (e.g., according to their area of medical

expertise), and each class comes with upper and lower quotas that indicate

the maximum and minimum number of residents belonging to that partic-

ular class that must be assigned to a given hospital in a feasible matching.

Huang’s motivation for the problem came from academic hiring, where

residents correspond to applicants, hospitals correspond to academic insti-

tutions, and each institution classifies its applicants according to various

criteria, which may include their research area, for example. The classi-

fication of applicants for a given institution need not give rise to disjoint

classes, reflecting the possibility that an applicant may be affiliated with

more than one research area. We give a formal definition of the Classi-

fied Stable Matching problem, and discuss some algorithmic and structural

results for the problem in Sec. 5.2.5. Whilst the two models of hr with

lower quotas studied in Secs. 5.2.2 and 5.2.3 lead to NP-completeness for

the problem of deciding whether a stable matching exists, somewhat sur-

prisingly the presence of lower quotas in the Classified Stable Matching

problem does not necessarily lead to NP-completeness. As we will show,

under certain conditions on the resident classifications, the problem of find-

ing a stable matching or reporting that none exists becomes solvable in

polynomial time.

Further motivation for variants of hr with lower and common quotas

comes from the Hungarian higher education matching scheme [84]. The

“residents” (i.e., applicants) rank in order of preference the courses of study

that they would like to follow (together with an indication as to whether

their chosen programme of study is to be financed privately or by the state).

The “hospitals” (i.e., colleges and universities) rank in order of preference

their applicants on the basis of academic performance (note that the eval-

uation criteria may vary from one institution to the next, so it need not be

the case that there is a single master list of all applicants). The matching

scheme has run since 1985, and typically over 100,000 students take part

annually (140,953 students in 2011).

What makes the scheme relevant in this context is the presence of lower

and common quotas. A course at a given college or university may have

a lower quota, indicating the minimum number of applicants that must be

assigned to it in order for it to run (or else the course is suspended for that

particular year). Biró et al. [84] also reported that, since 2007, there have

been common quotas for each field of study at each academic institution,
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in addition to a common quota for state-financed places for each field of

study nationally.

5.2.2 hr with lower quotas (model 1)

Recall that in an instance I of hr, each hospital hj ∈ H has a positive

integral capacity denoted by cj , which indicates the maximum number of

residents that may be assigned to hj . Suppose in addition that hj has a

non-negative lower quota lj, indicating the minimum number of residents

that must be assigned to hj before this hospital can open. For consistency,

we also denote cj by uj in this section, and we refer to uj as the upper

quota of hj . We assume that lj ≤ uj for each hj ∈ H . We let hr-lq-1

denote the extension of hr in which hospitals have lower quotas as well as

upper quotas.

A matching M in this context requires that every hospital hj ∈ H

satisfies |M(hj)| = 0 or lj ≤ |M(hj)| ≤ uj. We say that hj is closed if

|M(hj)| = 0, and open otherwise. We now present the stability concept for

hr-lq-1, as defined by Biró et al. [84].

Definition 5.1 ([84]). Let I be an instance of hr-lq-1 and let M be

a matching in I. Then M is stable if the following two conditions are

satisfied:

(1) (no blocking pair) there is no acceptable resident–hospital pair (ri, hj)

such that (i) ri is either unassigned or prefers hj to M(ri), (ii) hj is

open, and (iii) hj is either undersubscribed or prefers ri to a member

of M(hj);

(2) (no blocking coalition) there is no closed hospital hj (blocking hos-

pital) and set of lj residents, each of whom is either unassigned (and

finds hj acceptable) or prefers hj to her assigned hospital.

Under certain circumstances, an hr-lq-1 instance I is guaranteed to

admit a stable matching. For, let J be the hr instance obtained from I by

disregarding the lower quotas. Suppose that |Ma(hj)| ≥ lj for all hj ∈ H ,

where Ma is the resident-optimal stable matching in J . Then no hospital is

closed, so clearlyMa is stable in I. In fact, by the Rural Hospitals Theorem

(Theorem 1.11), any stable matching M in J also satisfies |M(hj)| ≥ lj for

all hj ∈ H , which implies that M is also stable in I. On the other hand if

some hospital in J does not achieve its lower quota in Ma, then I may not

admit a stable matching, as we now illustrate.
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Residents’ preferences Hospitals’ preferences
r1 : h1 h2 h1 : 2 : 2 : r1 r2
r2 : h2 h1 h2 : 1 : 1 : r1 r2

Fig. 5.1 An instance of hr-lq-1 with no stable matching due to Biró et al. [84]

Residents’ preferences Hospitals’ preferences
r1 : h1 h2 h1 : 2 : 2 : r1 r2
r2 : h2 h1 h2 : 3 : 3 : r1 r2 r3
r3 : h2

Fig. 5.2 An instance of hr-lq-1 with stable matchings of different sizes

Consider the hr-lq-1 instance I, due to Biró et al. [84], shown in

Fig. 5.1. Next to each hospital hj we show lj , then uj, followed by hj ’s

preference list. Let M be a matching in I. As the sum of the lower bounds

is 3 and there are only two residents, some hospital must be closed in M .

Suppose firstly that h1 is closed. If M(h2) = {r1} then {r1, r2} forms a

blocking coalition with h1. If M(h2) = {r2} then (r1, h2) forms a blocking

pair. Now suppose that h2 is closed. Then r2 forms a blocking coalition

with h2. Hence I admits no stable matching.

Even when an hr-lq-1 instance admits a stable matching, there could

be stable matchings of different sizes. To see this, consider the hr-lq-1

instance I, adapted from Example 2 in Ref. [83], shown in Fig. 5.2.

It is easy to verify that each of M1 = {(r1, h1), (r2, h1)} and M2 =

{(r1, h2), (r2, h2), (r3, h2)} is stable in I.

It turns out that, in contrast to the case for hr, the problem of decid-

ing whether a stable matching exists, given an hr-lq-1 instance, is NP-

complete, as the following result indicates.

Theorem 5.2 ([84]). The problem of deciding whether a given hr-lq-1

instance admits a stable matching is NP-complete, even if each upper and

lower quota is equal to 3.

The complexity of the decision problem is open in the case that each lower

quota is at most 2.

One way of coping with an unsolvable hr-lq-1 instance is to find a

matching (with some hospitals potentially closed) that meets only Condi-

tion 1 of Definition 5.1. Such a matching is referred to as a pairwise stable

matching. A pairwise stable matching always exists (which can be seen
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by simply closing all the hospitals). However one may seek to maximise

the number of assigned residents, which motivates max ps hr-lq-1, the

problem of finding a maximum cardinality pairwise stable matching in an

hr-lq-1 instance. Alternatively, when deciding which hospitals to close,

one may try to give priority to hospitals hj such that |Ma(hj)| ≥ lj , where

Ma is the resident-optimal stable matching in the hr instance obtained by

ignoring the lower quotas. Such a hospital is called popular . In an hr-lq-1

instance, a pairwise stable matching in which each popular hospital is open

is called a popular pairwise stable matching. Again, such a matching is

bound to exist (this can be seen by starting from Ma and then closing all

of the unpopular hospitals), but as before one may wish to maximise the

number of assigned residents. This gives max pop ps hr-lq-1, the prob-

lem of finding a maximum size popular pairwise stable matching in a given

hr-lq-1 instance. Each of max ps hr-lq-1 and max pop ps hr-lq-1 is

NP-hard, even if each lower and upper quota is equal to 3 [83]. Again, the

complexity of both problems is open if no lower quota exceeds 2.

5.2.3 hr with lower quotas (model 2)

Hamada et al. [275] considered an alternative version of hr-lq-1 in which

hospitals are not permitted to be closed, and a feasible matching must

satisfy the lower and upper quotas for each hospital. To ensure that such

a matching exists, the authors make the following assumptions, namely

that the number of residents is at least the sum of the lower quotas (which

seems reasonable) and that each resident finds acceptable all hospitals that

have a positive lower quota (a strong assumption, which is less likely to be

satisfied in practice). We refer to both of these assumptions collectively as

Assumption A.

We define hr-lq-2 as follows. An instance of this problem is the same

as for hr-lq-1, subject to the condition that Assumption A holds. In the

hr-lq-2 context, a matching M now requires that lj ≤ |M(hj)| ≤ uj for

each hospital hj ∈ H . The notion of stability for M just corresponds to

classical Gale–Shapley stability. The usage of the hr-lq-2 notation is thus

intended to emphasise that the matching and stability concepts here are

distinct from those defined for hr-lq-1.

Although a matching is bound to exist in an hr-lq-2 instance as noted

above, a stable matching need not. To see this, consider the simple hr-lq-2

instance I shown in Fig. 5.3 (again each hospital is followed by its lower

quota, upper quota and preference list). The unique matching in I is M =
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Resident’s preferences Hospitals’ preferences
r1 : h1 h2 h1 : 0 : 1 : r1

h2 : 1 : 1 : r1

Fig. 5.3 An instance of hr-lq-2 with no stable matching

{(r1, h2)} due to h2’s lower quota, but clearly M is not stable. It is of

course straightforward to determine whether an instance I of hr-lq-2

admits a stable matching: just find the resident-oriented stable matching

Ma in the underlying hr instance obtained by ignoring the lower quotas.

If |Ma(hj)| ≥ lj for each hj ∈ H then clearly Ma is a stable matching in I,

otherwise by Theorem 1.11, I admits no stable matching.

In order to cope with the possible non-existence of a stable matching, the

authors considered matchings that minimise either the number of blocking

pairs, or the number of blocking residents (i.e., the number of residents who

are involved in a blocking pair) — this approach was also taken in Secs. 2.8

and 4.6 for smi and sri respectively.

Let min bp hr-lq-2 (min br hr-lq-2) denote respectively the prob-

lems of finding a matching with the minimum number of blocking pairs

(residents), given an instance of hr-lq-2. Hamada et al. proved the follow-

ing results.

Theorem 5.3 ([275]). Let n1 and n2 denote respectively the numbers of

residents and hospitals in a given hr-lq-2 instance. The following results

hold for min bp hr-lq-2 and min br hr-lq-2:

(i) min bp hr-lq-2 is not approximable within (n1 + n2)
1−ε, for any

ε > 0, unless P=NP. The result holds even if (i) all the preference

lists are complete, (ii) all hospitals have the same preference list, and

(iii) uj = 1 for each hj ∈ H.

(ii) min bp hr-lq-2 is approximable within n1 + n2.

(iii) min bp hr-lq-2 is solvable in O(b2(n2(n1 + b))b+1) time, where b is

the number of blocking pairs in an optimal solution, for the restriction

that uj = 1 for each hj ∈ H.

(iv) min br hr-lq-2 is NP-hard. The result holds even if each (i) hospi-

tal’s preference list is obtained from a “master list” of residents (see

Sec. 1.3.6), and (ii) uj = 1 for each hj ∈ H.

(v) min br hr-lq-2 is approximable within
√
n1.

(vi) If min br hr-lq-2 is approximable within c, for some constant c > 1,
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then the Dense k-Subgraph problem1 is approximable within (1 + ε)c4,

for any ε > 0.

It is of interest to consider the approximability of min br hr-lq-2 in the

absence of Assumption A. Of course, in such a setting a matching need not

exist, but one can decide in polynomial time whether a matching does exist

(by solving the Degree Constrained Subgraph problem [226]). We can thus

define hr-lq-3 to be the variant of hr-lq-2 in which (i) Assumption A is

not necessarily satisfied, (ii) the concepts of a matching and stability are

defined as in the hr-lq-2 case, and (iii) a matching exists. We then define

min br hr-lq-3 as the problem of finding a matching with the minimum

number of blocking residents, given an instance of hr-lq-3. Hamada et al.

[275] proved that min br hr-lq-3 is not approximable within n1−ε, for any

ε > 0, unless P=NP. min bp hr-lq-3 (the counterpart of min bp hr-lq-3

where we seek to minimise the number of blocking pairs rather than the

number of blocking residents) is also worthy of investigation, although it is

likely that this problem is as hard to approximate as min br hr-lq-3.

Fragiadakis et al. [221] also considered hr-lq-2, but they strengthened

Assumption A and insisted that each resident ranks all hospitals and vice

versa. Even so, a stable matching still need not exist in these circumstances

(again Fig. 5.3 illustrates this). The authors proposed strategy-proof mech-

anisms for finding matchings that satisfy criteria that are weaker than sta-

bility, including Pareto optimality, and the elimination of so-called strong

justified envy.

5.2.4 hr with common quotas

In this subsection we consider hr with common quotas, denoted by hr-cq,

as studied by Biró et al. [84]. Although lower quotas are no longer present,

sets of hospitals may have common upper quotas that limit the number of

residents that may be collectively assigned to them. Formally, an instance

I of hr-cq is an hr instance together with a set H ⊆ P(H), which we

refer to as a set system of hospitals, comprising the so-called bounded sets

of hospitals. Each bounded set of hospitals Hk ∈ H has a common quota

denoted by Uk. Here, the upper case ‘U ’ is intended to distinguish the

upper quota of a bounded set of hospitals from the upper quota uj of an

individual hospital hj ∈ H .

1An instance of this problem is a graph G and an integer k, and the problem is to find
an induced subgraph of G with k vertices that contains as many edges as possible. This
problem is not currently known to have a constant-factor approximation algorithm.
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Moreover, in I each Hk ∈ H has a preference list over a subset of R that

constitutes a master list for the hospitals in Hk. That is, the preference

lists in I satisfy the following three conditions:

(1) for each Hk ∈ H, A(Hk) =
⋃

hj∈Hk
A(hj), where A(hj) (respectively

A(Hk)) denotes the set of residents that hj (Hk) finds acceptable;

(2) for each Hk ∈ H, and for each hj ∈ Hk, hj ’s preference list is obtained

from that of Hk by deleting the residents in A(Hk)\A(hj);

(3) for any two bounded sets {Hk, Hl} ⊆ H, let H ′ = Hk ∩ Hl and let

A′ =
⋃

hr∈H′ A(hr). Then for any {ri, rj} ⊆ A′, ri precedes rj on Hk’s

list if and only if ri precedes rj on Hl’s list.
2

A matching M in I is a matching in the underlying hr instance (ob-

tained by ignoring the common quotas) such that |M(Hk)| ≤ Uk for each

Hk ∈ H, where M(Hk) =
⋃

hj∈Hk
M(hj). We may as well assume that

Uk <
∑

hj∈Hk
uj , for otherwise the common quota of Hk is redundant as

far as the definition of a matching is concerned, and Hk can be deleted from

the set system. The definitions of undersubscribed, full and oversubscribed

for a hospital hj ∈ H carry over in a natural way to a bounded set Hk ∈ H.

We now present the concept of stability, as defined by Biró et al. [84].

Definition 5.4 ([84]). Let I be an instance of hr-cq and let M be a

matching in I. A blocking pair of M is an acceptable resident–hospital

pair (ri, hj) ∈ (R×H)\M such that:

(1) either ri is unassigned in M or prefers hj to M(ri);

(2) either hj is undersubscribed in M or prefers ri to the worst resident in

M(hj);

(3) for each Hk ∈ H such that hj ∈ Hk, either Hk is undersubscribed or

prefers ri to the worst resident in M(Hk).

M is stable if M admits no blocking pair.

2Note that in Ref. [84], the authors erroneously claimed that a condition similar to
the third condition in the above list followed as a consequence of the first two. This
observation was then used later in the paper (in the final paragraph of Sec. 4.1 of Ref.
[84]) when considering nested set systems (defined below). Thus, in order for certain
results in Ref. [84] to hold true, the third condition must be added as a property to
be satisfied by an instance of hr-cq. The property states that the master lists of two
bounded sets Hk and Hl must agree with respect to the relative order of the applicants
who are collectively found acceptable by the hospitals in the intersection of Hk and Hl.
Since the condition is arguably a natural one, it is not unreasonable to insist that it be
satisfied by an instance of hr-cq.
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Residents’ preferences Hospitals’ preferences
r1 : h1 h4 h1 : 1 : r1
r2 : h2 h2 : 1 : r2
r3 : h4 h3 h3 : 1 : r3

h4 : 1 : r1 r3
H1 = {h1, h2} : 1 : r2 r1
H2 = {h2, h3} : 1 : r3 r2

Fig. 5.4 An instance of hr-cq with no stable matching due to Biró et al. [84]

Residents’ preferences Hospitals’ preferences
r1 : h4 h1 h1 : 1 : r1
r2 : h2 h4 h2 : 1 : r2
r3 : h3 h3 : 1 : r3

h4 : 1 : r2 r1
H1 = {h1, h2} : 1 : r1 r2
H2 = {h2, h3} : 1 : r2 r3

Fig. 5.5 An instance of hr-cq with stable matchings of different sizes

An instance of hr-cq need not admit a stable matching. To see this,

consider the hr-cq instance I, due to Biró et al. [84], shown in Fig. 5.4

(next to each hospital hj we show uj , followed by hj ’s preference list, and

we do likewise for each bounded set Hk). Suppose for a contradiction that

M is a stable matching in I. If r1 is unassigned in M then (r1, h4) blocks

M . Otherwise, if M(r1) = h1 then (r3, h4) ∈ M , for otherwise (r3, h4)

blocks M . But then (r2, h2) blocks M . Hence M(r1) = h4, which implies

that (r3, h3) ∈ M , for otherwise (r3, h3) blocks M . But then (r2, h2) /∈ M ,

so (r1, h1) blocks M , a contradiction.

Even when an hr-cq instance does admit a stable matching, it turns

out that the stable matchings can have different sizes. To illustrate this,

consider the hr-cq instance I shown in Fig. 5.5. It may be verified that

each of M1 = {(r1, h4), (r2, h2)} and M2 = {(r1, h1), (r2, h4), (r3, h3)} is

stable in I.

Even determining whether a stable matching exists in a given hr-cq

instance is hard, as the next result indicates.

Theorem 5.5 ([84]). The problem of deciding whether a given hr-cq

instance admits a stable matching is NP-complete, even if (i) every hospital

and every bounded set has upper quota 1, (ii) each bounded set contains two

hospitals, and (iii) each hospital appears in at most two bounded sets.
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What makes hr-cq hard is the existence of pairs of bounded sets of

hospitals that have a non-empty intersection, where neither bounded set

is contained in the other. In the absence of such bounded sets, efficient

algorithms and elegant structural results can be derived for this problem.

In a given hr-cq instance, define the set system of hospitalsH to be nested3

if, for any bounded sets Hk, Hl ∈ H such that Hk ∩Hl 6= ∅, either Hk ⊆ Hl

or Hl ⊆ Hk. Let hr-cq-nss denote the restriction of hr-cq in which the

set system of hospitals is nested.

Biró et al. [84] presented two algorithms for finding stable matchings

in a given instance of hr-cq-nss. These algorithms are resident-oriented

and hospital-oriented in that they find stable matchings that are resident-

optimal and hospital-optimal in precise senses, respectively. As a by-

product of establishing the correctness of these algorithms, the authors

deduced that every instance of hr-cq-nss admits at least one stable match-

ing. The following theorems summarise the discussion in this paragraph,

indicating the complexity of the algorithms and the precise optimality prop-

erties that are satisfied in each case.

Theorem 5.6 ([84]). Given an instance of hr-cq-nss, the resident-

oriented algorithm finds a stable matching M that is resident-optimal in the

following sense. In M , each assigned resident is assigned to the best hospital

that she could obtain in any stable matching, and each unassigned resident

is unassigned in every stable matching. The complexity of this algorithm

is O(km + pn1), where k is the maximum level of nesting (i.e., the maxi-

mum integer k such that there exist bounded sets Hi1 ⊂ Hi2 ⊂ · · · ⊂ Hik),

m is the number of acceptable resident–hospital pairs, n1 is the number of

residents and p = |H| is the number of bounded sets.

Theorem 5.7 ([84]). Given an instance of hr-cq-nss, the hospital-

oriented algorithm finds a stable matching M that is hospital-optimal in

the following sense. For any hospital hj ∈ H, there is no stable match-

ing in which hj is assigned a resident ri ∈ R\M(hj) whom hj prefers to

some member of M(hj). Also in M , each assigned resident is assigned to

the worst hospital that she could obtain in any stable matching, and each

unassigned resident is unassigned in any stable matching. The complexity

of this algorithm is O(n2m), where n2 is the number of hospitals and m is

the number of acceptable resident–hospital pairs.

3A nested set system is also referred to in the literature as a laminar family [290,218].
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A consequence of each of Theorems 5.6 and 5.7 is that all stable matchings

for a given hr-cq-nss instance have the same cardinality. We also note

that, although we refer to the matching M output by the hospital-oriented

algorithm as being hospital-optimal, it is nevertheless possible that a hos-

pital hj ∈ H could obtain a set of assignees in another stable matching M ′

where M ′(hj) ⊃ M(hj). However Theorem 5.7 implies that any resident in

M ′(hj)\M(hj) is worse than hj’s worst assignee in M .

Using a matroid-theoretic approach, Biró et al. [84] established the

following structural results that generalise the Rural Hospitals Theorem

(Theorem 1.11):

Theorem 5.8 ([84]). Let I be an instance of hr-cq-nss4 and let M be

a stable matching in I. The following properties hold:

(i) the same residents are assigned in all stable matchings;

(ii) for a given bounded set Hk ∈ H, if there is no bounded set Hl ∈ H
such that Hk ⊂ Hl and Hl is full in M , then Hk has the same number

of assignees in all stable matchings;

(iii) for a given bounded set Hk ∈ H, if there are no bounded sets Hj , Hl ∈
H such that Hj ⊆ Hk ⊂ Hl and each of Hj and Hl is full in M , then

Hk has the same set of assignees in all stable matchings.

Note that Theorem 5.8 does indeed generalise the corresponding result for

hr (Theorem 1.11), since, an hr instance I can be considered as an hr-cq-

nss instance J by letting each hospital in hj in I become a bounded set {hj}
in J such that Uj = uj. Then each of Parts (ii) and (iii) of Theorem 1.11

can be deduced from the corresponding part of Theorem 5.8 by considering

the bounded set {hj} for any hospital hj .

We further remark that Biró et al. [84] also established a counterpart

of Theorem 2.9 for hr-cq-nss.

We close this subsection by noting that Kamada and Kojima [354,355]

considered an alternative model for hr-cq motivated by regional caps in

the JRMP, as described in Sec. 5.2.1. In their model, there is no master

list of residents for a given bounded set of hospitals, and hence there is no

requirement for the hospitals in a given bounded set to have preference lists

that are consistent with one another relative to a master list. The stability

definition given by the authors is very different to that defined by Biró et al.

4Parts (ii) and (iii) of this result are derived from Theorem 17 in Ref. [84], which is
erroneously stated in terms of hr-cq rather than hr-cq-nss. However the proof of this
theorem does require the set system to be nested.
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[84] for hr-cq. Kamada and Kojima [354, 355] defined a feasible matching

(i.e., a matching in the underlying hr instance that satisfies the common

upper quotas specified by the regional caps) to be stable if the only blocking

pairs that it admits (where blocking pair is defined relative to classical Gale–

Shapley stability) involve a resident ri and a hospital hj such that (i) the

number of residents assigned to hj ’s region is equal to the regional cap, (ii)

hj prefers all of its assignees to ri, and (iii) either ri is not already assigned

within hj ’s region, or the movement of ri to hj “equalises” the excesses over

certain target capacities (see Ref. [354,355] for more details). Thus, certain

blocking pairs are tolerated in theory with respect to this definition, but in

practice the government would prevent these blocking pairs from leading to

any disruption of the matching by imposing harsh penalties on agents who

deviate from their assignment. Kamada and Kojima [354, 355] presented

an algorithm that always finds a matching that is stable relative to their

definition, though they do not discuss the computational complexity of their

algorithm.

5.2.5 Classified stable matching

In Sec. 5.2.1, we described informally the Classified Stable Matching prob-

lem as a further generalisation of hr involving lower and common quotas

(this time the two types of quota are both present). Huang [291] studied

this problem in the context of assigning applicants to academic institutions.

However, for consistency with the preceding subsections, we will describe

the problem in terms of residents and hospitals, and refer to it as the Hos-

pitals / Residents problem with Classified Residents (hr-cr).

Formally, an instance I of hr-cr comprises an hr instance such that

each hospital hj ∈ H has a family of sets of residents, or classes, denoted

by Rj , defined as follows:

Rj = {Rk
j : Rk

j ⊆ A(hj) ∧ 1 ≤ k ≤ |Rj |},

where A(hj) denotes the set of residents that are acceptable to hj . The

family of sets Rj is referred to as hj ’s classification of its acceptable resi-

dents. As noted in Sec. 5.2.1, two classes in Rj need not be disjoint. Each

class Rk
j ∈ Rj has an upper quota uk

j ∈ Z
+ and a lower quota lkj ∈ Z

+
0 . We

lose no generality in assuming that
⋃s

k=1 R
k
j = A(hj), where s = |Rj |, for if

some resident ri ∈ A(hj) does not belong to any class in hj ’s classification,

we can always add a new class Rs+1
j = {ri} to Rj where us+1

j = 1 and

ls+1
j = 0.
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A matching in I is a matching M in the underlying hr instance (ob-

tained by ignoring the hospitals’ classifications) such that, for each hospital

hj ∈ H and for each class Rk
j ∈ Rj , lj ≤ |M(hj) ∩ Rk

j | ≤ uj. That is, the

number of residents assigned to hj in M that belong to the class Rk
j must

respect the lower and upper quotas of that class. We remark that, by

adding a special class R0
j = A(hj) to Rj , where u0

j = uj and l0j = 0, we

need not explicitly ask that |M(hj)| ≤ uj in the definition of a matching,

since this is enforced by R0
j . However at least for our purposes here, there is

no real benefit in making this addition to Rj . We now present the stability

concept for hr-cr, as defined by Huang [291].

Definition 5.9 ([291]). Let I be an instance of hr-cr and let M be a

matching in I. A blocking coalition of M comprises a hospital hj ∈ H and

a set of residents R′ ⊆ A(hj) such that:

(1) |M(hj)| ≤ |R′| ≤ uj;

(2) for each Rk
j ∈ Rj, l

k
j ≤ |R′ ∩Rk

j | ≤ uk
j ;

(3) for each r′i ∈ R′, either r′i is unassigned in M or r′i prefers hj to M(r′i),

or M(r′i) = hj;
5

(4) there exists some r′i ∈ R′ such that either r′i is unassigned in M or r′i
prefers hj to M(r′i);

(5) for each i (1 ≤ i ≤ t), either hj prefers r′i to ri or r′i = ri, where

M(hj) = {r1, . . . , rt} and R′ = {r′1, . . . , r′t′}, and without loss of gener-

ality the elements of each set are listed in decreasing order of preference

according to hj’s preference list;

(6) either t′ > t, or there exists some i (1 ≤ i ≤ t) such that hj prefers r′i
to ri.

M is stable if M admits no blocking coalition.

Conditions 1 and 2 of the blocking coalition definition state that the

residents R′ involved must respect the quotas of the hospital hj and those

of the classes in hj ’s classification. Moreover, since R′ would be hj ’s new set

of assignees, the cardinality of R′ must be at least as great as the number

of hj ’s existing assignees. Conditions 3 and 4 state that no resident in

R′ should be worse off by moving to hj , whilst at least one resident in

R′ should be better off. Similarly, Condition 5 states that hj should not

5The definition of a blocking group in Ref. [291], on which we base our definition of
a blocking coalition, is erroneous in that it allows a resident to become worse off after
switching to hj . We correct this error in our definition.
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obtain a worse set of assignees, whilst Condition 6 states that hj should

either obtain more assignees or at least one better assignee.

It is straightforward to come up with an hr-cr instance that has a

matching, but no stable matching. For, consider the hr-lq-2 instance

shown in Fig. 5.3. By ignoring the hospitals’ lower quotas, and by letting

R1 = ∅ and R2 = {R1
2}, where R1

2 = {r1} and l12 = u1
2 = 1, we obtain

an instance of hr-cr which clearly admits no stable matching. Huang

[289, Fig. 3] gave an instance of hr-cr which admits stable matchings of

different sizes.

Huang [291] proved the following algorithmic results concerning hr-cr.

In what follows, hr-cr-nss denotes the restriction of hr-cr in which each

hospital hj ’s classification is a nested set system.

Theorem 5.10 ([291]). The problem of deciding whether a given instance

of hr-cr admits a stable matching is NP-complete. The result holds even

if each hospital’s classification contains only two classes, and each of these

classes has lower quota 0.

Theorem 5.11 ([291]). Let I be an instance of hr-cr-nss. There is an

O(m2) algorithm to find a stable matching in I or report that none exists,

where m is the number of acceptable resident–hospital pairs in I. For each

hospital hj, if each class in hj’s classification has lower quota 0, then a

stable matching always exists. In general, if I does admit a stable matching,

then the algorithm constructs the resident-optimal stable matching M in I,

which satisfies the following properties:

(i) in M , each assigned resident is assigned to the best hospital that she

could obtain in any stable matching, and each unassigned resident is

unassigned in every stable matching;

(ii) each hospital hj ∈ H has the worst possible set of assignees in M :

that is, suppose that M ′ is a stable matching in I such that M(hj) 6=
M ′(hj), and let M(hj) = {r1, . . . , rt} and M ′(hj) = {r′1, . . . , r′t} 6,

where without loss of generality the elements of each set are listed in

decreasing order of preference according to hj’s preference list. Then

there exists some s (1 ≤ s ≤ t) such that ri = r′i (1 ≤ i < s) and hj

prefers r′s to rs.

6Theorem 5.12 states that every hospital has the same number of assignees in every
stable matching in I.
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In fact, Huang [291] proved a dichotomy result concerning the complexity

of hr-cr. For each hospital hj ∈ H he defined a class inclusion poset,

which is the inclusion poset on the set of non-empty intersections of pairs

of (not necessarily distinct) classes in hj ’s classification Rj . A poset is

defined to be a downward forest if any two successors of a given element are

comparable. Huang’s dichotomy result is as follows: if every class inclusion

poset is isomorphic to a downward forest, then the problem of finding a

stable matching or reporting that none exists is solvable in polynomial time.

Otherwise, the problem of deciding whether a stable matching exists is NP-

complete. As Huang remarks, if every class inclusion poset is isomorphic to

a downward forest then each hospital’s classification is a nested set system,

and thus we obtain an instance of hr-cr-nss and can apply Theorem 5.11.

In the hr-cr-nss context, Huang [291] established the following struc-

tural results that generalise the Rural Hospitals Theorem (Theorem 1.11):

Theorem 5.12 ([291]). Let I be an instance of hr-cr-nss that admits

a stable matching, and let M be a stable matching in I. For any hospital

hj ∈ H, let R′
j be the set of maximal (under set inclusion) classes Rk

j ∈ Rj

such that |M(hj) ∩ Rk
j | = uk

j . Let R′′
j be the set of classes Rk

j ∈ Rj such

that Rk
j ∩Rl

j = ∅ for all Rl
j ∈ R′

j . Then the following properties hold:

(i) the same residents are assigned in all stable matchings (and hence all

stable matchings in I have the same size);

(ii) hj has the same number of assignees in all stable matchings;

(iii) each class in R′
j ∪ R′′

j has the same number of assignees in all stable

matchings;

(iv) each class in R′′
j has the same set of assignees in all stable matchings.

Note that Theorem 5.12 is a true generalisation of Theorem 1.11, for given

an hr instance I we can form an hr-cr-nss instance J from I, such that

for each hj ∈ H , Rj = {R1
j}, where R1

j = A(hj), l
1
j = 0 and u1

j = uj .

Given a stable matching M in I, if some hospital hj is undersubscribed in

M then R1
j ∈ R′′

j , and hence Part (iv) of Theorem 5.12 implies Part (iii) of

Theorem 1.11.

Denote by hr-cr-nss-0 the special case of hr-cr-nss in which the lower

bound of every class in a given hospital’s classification is 0. For this prob-

lem, Huang proved that stability as defined by Definition 5.9 is equivalent

to establishing the absence of a blocking pair involving a single resident

and a hospital. Further, Huang [291] gave a polyhedral characterisation for

hr-cr-nss-0. In particular, he proved that the extreme points of a poly-

tope that characterises fractional stable matchings are integral. He gave a
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separation oracle based on dynamic programming that enables a solution

to the LP constraints to be found in polynomial time. Moreover, a suitable

choice of objective function allows optimal stable matchings (for various

optimality criteria) to be found efficiently. Huang also proved an analogue

of Theorem 2.9 for hr-cr-nss-0. He left open whether his polyhedral char-

acterisation could be extended to more general instances of hr-cr-nss in

which classes in the classifications of hospitals could have a positive lower

quota.

Fleiner and Kamiyama [218] answered this question in the affirmative,

not just for hr-cr-nss, but in fact for a more general many–many bipartite

stable matching problem where agents on each side can classify agents on

the other side, and again the classifications form nested set systems. Using

a matroid-theoretic approach, and by defining a natural stability concept

(that turns out to be equivalent to Huang’s definition in the hr-cr-nss

case), they gave an O(m3) algorithm to find a stable matching or report

that none exists, where m is the number of acceptable pairs of agents in an

instance. Moreover, they gave a polyhedral characterisation of the set of

stable matchings for an instance of this problem, leading to a polynomial-

time algorithm for finding an optimal stable matching (relative to a linear

cost function), thus solving Huang’s open problem. Furthermore, they

showed that the set of stable matchings for a given problem instance I

forms a lattice, and proved that, if I admits a stable matching, then a

matching that is analogous to the man-optimal stable matching in the sm

case can be found in O(m3) time.

5.3 hr with couples

5.3.1 Introduction

The existence of couples who wish to be located at the same hospital, or

at hospitals geographically close to one another, gives rise to an important

variant of hr called the Hospitals / Residents problem with Couples (hrc)

[498,261,493,514,91]. Couples rank acceptable pairs of hospitals in order of

preference, where each pair represents a simultaneous assignment of both

residents involved in the couple to two (not necessarily distinct) hospitals.

The study of hrc was motivated by the fact that, in the mid-1970s, partic-

ipation in the NRMP was observed to decrease, as a result of the original

algorithm being unable to cope satisfactorily with the complicated prefer-

ence structure of couples [498]. The NRMP algorithm was redesigned in

1983 and in the mid-1990s to address this issue, among others [498, 507].
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Two crucial distinctions between hr and hrc are that (i) an instance

of hrc need not admit a stable matching, and (ii) the problem of deciding

whether an hrc instance admits a stable matching is NP-complete. In this

section we will elaborate on these results, as well as discussing additional al-

gorithmic results for hrc. The section is organised as follows. In Sec. 5.3.2,

we define hrc formally and present some preliminary results that mainly

illustrate the lack of structure in a given problem instance I (as compared

to hr, say). This includes the observation that I may not admit a stable

matching. In Sec. 5.3.3, we survey algorithmic results for hrc.

We then look at two restrictions of hrc which involve additional as-

sumptions about the structure of the couples’ preference lists. The first,

called the Hospitals / Residents problem with Consistent Couples (hrcc)

and studied in Sec. 5.3.4, relates to the case where the couples’ lists are

consistent in a precise sense with derived preference lists over individual

hospitals involving the residents in the couples. The second, called the

Hospitals / Residents problem with Inseparable Couples (hric) and studied

in Sec. 5.3.5, is the special case of hrcc in which both members of a given

couple must either be assigned to the same hospital or not at all.

We remark that there is an excellent, comprehensive survey of hrc due

to Biró and Klijn [91]. Our purpose here is to focus largely on algorithmic

results. Whilst this inevitably leads to a small degree of overlap with Ref.

[91], the reader is strongly encouraged to refer to Ref. [91] for additional

background and results relating to hrc that we do not cover here.

5.3.2 Problem definition and preliminary results

The Hospitals / Residents problem with Couples (hrc) may be defined

formally as follows. An instance I of hrc involves a set R = {r1, . . . , rn1
}

of residents and a set H = {h1, . . . , hn2
} of hospitals. A subset R′ of the

residents in R is partitioned into ordered pairs, each called a couple, such

that each resident in R′ belongs to exactly one couple. The set of couples

is denoted by RC . We denote by RS = R\R′ the single residents , i.e., the

residents who do not belong to a couple in RC .

Each single resident ri ∈ RS has a strict preference list over acceptable

hospitals. Each couple (ri, rj) ∈ RC submits a joint (strict) preference list

over acceptable pairs of hospitals. Each entry in this list is an ordered pair

(hk, hl) ∈ H × H of (not necessarily distinct) hospitals representing the

assignment of ri to hk and of rj to hl. The fact that ri precedes rj in

a given ordered pair does not suggest that ri has any kind of precedence
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over rj in a given matching mechanism, but the notation merely serves to

disambiguate which hospital each member of the couple will be assigned

to. We denote by A(ri, rj) the set of pairs of hospitals that (ri, rj) find

acceptable. Hence, ri finds acceptable the set of hospitals A(ri) = {hk :

(hk, hl) ∈ A(ri, rj)}, and similarly rj finds acceptable the set of hospitals

A(rj) = {hl : (hk, hl) ∈ A(ri, rj)}.7,8 Finally, each hospital hj ∈ H has

a capacity cj ∈ Z
+, and ranks those residents in R (whether single or a

member of a couple) who find hj acceptable in strict order of preference.

A matching M in I is, as in the hr case, a set of mutually acceptable

resident–hospital pairs such that (i) each resident appears in at most one

pair, (ii) each hospital hj appears in at most cj pairs, and additionally (iii)

for each (ri, rj) ∈ RC , (M(ri),M(rj)) ∈ A(ri, rj). That is, the hospitals

that ri and rj are jointly assigned to inM are compatible for them according

to their joint preference list.

Stability definitions for a matching in I have been given previously in

the literature [498,261,493,178,115,387,390,392]. However it appears that

none of the stability definitions in these sources adequately takes account

of the possibility that, given a couple (ri, rj) who prefer a pair (hk, hl) to

(M(ri),M(rj)), it may be that hk = hl (that is, the two residents concerned

wish to move to the same hospital rather than to remain with their current

hospitals). Biró and Klijn [91] gave a detailed discussion of precisely this

issue, and remarked that there appear to be four sources in the literature

that do take account of this possibility when defining stability in hrc,

namely Refs. [444,87,428,396] (see also the comprehensive rationale given in

Ref. [87] for the authors’ stability definition). Biró and Klijn gave examples

that indicate that the stability definitions in Refs. [444, 87, 396] are all

distinct from one another. The definitions of Refs. [444] and [428] are

very similar apart from one missing case in the definition of Ref. [428]9.

Throughout this section we will adopt the following definition of

McDermid and Manlove [444] as our stability definition for hrc.

7A couple may wish to indicate in their preference list the possibility that one member is
unassigned, whilst the other is assigned to a hospital. For example, (ri, rj) might prefer
(hk1

, ∗) to (hk2
, hk3

), where “∗” represents a resident being unassigned. To facilitate
this, we can simply introduce a new “dummy” hospital hn2+1, where cn2+1 = n1, and
the assignment of a resident rj to hn2+1 represents rj being unassigned in practice.
8Of course it need not follow that hk ∈ A(ri) and hl ∈ A(rj) implies (hk, hl) ∈ A(ri, rj).
9The authors have overlooked the possibility that a couple (ri, rj) prefers (hk, hk) to

their assignment (hk , hl) in a given matching M , where hk and hl are distinct, ck = 2,
hk prefers ri to rj to rs, and rs is a single resident in M(hk). It seems reasonable
that (ri, rj) should block M with hk in a stability definition, though this is not possible
according to the definition of Marx and Schlotter [428].
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Definition 5.13 ([444]). Let I be an instance of hrc and let M be a

matching in I. A blocking pair relative to M satisfies at least one of the

following properties:

(1) it involves a single resident ri ∈ RS and a hospital hj ∈ H such that

(ri, hj) blocks M as per Definition 1.8;

(2) it involves a couple (ri, rj) ∈ RC and a hospital hk ∈ H such that either

(a) (ri, rj) prefers (hk,M(rj)) to (M(ri),M(rj)), and hk is either un-

dersubscribed in M or prefers ri to some member of M(hk)\{rj};
or

(b) (ri, rj) prefers (M(ri), hk) to (M(ri),M(rj)), and hk is either un-

dersubscribed in M or prefers rj to some member of M(hk)\{ri};
(3) it involves a couple (ri, rj) ∈ RC and a pair of (not necessarily distinct)

hospitals hk, hl ∈ H such that hk 6= M(ri), hl 6= M(rj), (ri, rj) prefers

(hk, hl) to (M(ri),M(rj)), and either

(a) hk 6= hl, and hk (respectively hl) is either undersubscribed in M or

prefers ri (respectively rj) to at least one of its assigned residents

in M ; or

(b) hk = hl, and ck − |M(hk)| ≥ 2; or

(c) hk = hl, and ck − |M(hk)| = 1, and hk prefers at least one of ri, rj
to some member of M(hk); or

(d) hk = hl, hk is full in M , hk prefers ri to some rs ∈ M(hk), and

hk prefers rj to some rt ∈ M(hk)\{rs}.

M is stable if it admits no blocking pair.

Note that when all hospitals have capacity 1, Conditions 3(b), 3(c) and

3(d) in Definition 5.13 cannot occur, and the disparity between the stability

definitions in the literature caused by a blocking pair involving a couple,

both members of whom wish to move to the same hospital, is eliminated.

One of the issues with stability definitions for hrc concerns whether score-

limits [90] are preserved by blocking pairs — see Ref. [87] for a more detailed

discussion of this point.

Biró and Klijn [91] gave an instance I of hrc that admits no stable

matching, which is shown in Fig. 5.6. Here, (r1, r2) is a couple and r3
is a single resident, whilst adjacent to each hospital we show its capacity

followed by its preference list. There are three possible matchings for this

instance: M1 = {(r1, h1), (r2, h2)}, M2 = {(r3, h1)} and M3 = {(r3, h2)}.
M1 is blocked by (r3, h2), M2 is blocked by ((r1, r2), (h1, h2)), whilst M3 is
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Residents’ preferences Hospitals’ preferences
(r1, r2) : (h1, h2) h1 : 1 : r1 r3

r3 : h1 h2 h2 : 1 : r3 r2

Fig. 5.6 An instance of hrc with no stable matching due to Biró and Klijn [91]

Residents’ preferences Hospitals’ preferences
(r1, r2) : (h1, h1) h1 : 2 : r1 r3 r2

r3 : h1

Fig. 5.7 A second instance of hrc with no stable matching

blocked by (r3, h1). If we allow hospitals to have non-unitary capacity, an

even smaller hrc instance I ′, shown in Fig. 5.7, demonstrates the possible

non-existence of a stable matching. A similar argument to that employed

for I can be used to show that I ′ admits no stable matching. Biró and

Klijn remarked that Roth [498] was the first to demonstrate that an hrc

instance need not admit a stable matching.

Biró and Klijn [91] also gave example hrc instances with the following

properties:

(i) there is no stable matching that is optimal for either the residents or

the hospitals, as originally shown by Aldershof and Carducci [37];

(ii) the stable matchings have different sizes, as originally shown by Alder-

shof and Carducci [37];

(iii) there exists a matching M from which we cannot reach a stable match-

ing by iteratively satisfying blocking pairs (see Sec. 2.6), as originally

shown by Klaus and Klijn [390];

(iv) there exists no strategy-proof mechanism that produces a stable

matching whenever one exists (this was shown by illustrating that,

with respect to an instance with a unique stable matching M1, a sin-

gle resident r can misrepresent her preferences in order to obtain an

instance with a unique stable matching M2, where r is assigned in M2

and unassigned in M1).

5.3.3 Algorithmic results

The main algorithmic result for hrc is due to Ronn [492,493], who showed

that, in contrast to hr, the problem of finding a stable matching if one

exists is unlikely to be solvable in polynomial time. Moreover the result

holds for a restricted case of hrc, as follows.
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Theorem 5.14 ([492,493]). Given an instance of hrc, the problem of

deciding whether a stable matching exists is NP-complete. The result holds

even if each hospital has capacity 1 and there are no single residents.

The possible non-existence of a stable matching in a given hrc instance

in I motivates the problem of finding a matching in I with the minimum

number of blocking pairs. Theorem 5.14 implies that this problem is NP-

hard, though its approximability is open. Also open is the complexity of the

problem of finding a maximum matching in I with the minimum number

of blocking pairs. It is likely that this problem is NP-hard, though again

its approximability is of interest.

Theorem 5.14 was independently proved by Ng and Hirschberg [463],

who actually established NP-completeness for a slightly more restricted

case.

Theorem 5.15 ([463]). Given an instance of hrc, the problem of de-

ciding whether a stable matching exists is NP-complete. The result holds

even if each hospital has capacity 1, there are no single residents, and each

couple finds acceptable every distinct pair of hospitals.

Ng and Hirschberg also considered the variant of hrc in which H is par-

titioned into two sets H1 and H2, where H1 =
⋃

(ri,rj)∈RC
A(ri) and

H2 =
⋃

(ri,rj)∈RC
A(rj). That is, if we regard the set of all first (respectively

second) members of each couple to be collectively the men (respectively

women), then H1 (respectively H2) is the set of hospitals that the men

(respectively women) collectively find acceptable. Since H is partitioned

into H1 and H2, this implies that the job market for the men is disjoint

from the job market for the women. We denote this restriction of hrc by

hrc-dual-market. Ng and Hirschberg proved that NP-completeness also

holds for hrc-dual-market.

Theorem 5.16 ([463]). Given an instance of hrc-dual-market, the

problem of deciding whether a stable matching exists is NP-complete. The

result holds even if each hospital has capacity 1 and there are no single

residents.

Biró et al. [87] established NP-completeness for a special case of hrc

in which the preference lists of hospitals are derived from a single master

list of residents. This case is important from the standpoint of practical
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applications (for example, in the SFAS context, there is a single ranking of

residents according to academic “scores”).

Theorem 5.17 ([87]). Given an instance of hrc, the problem of deciding

whether a stable matching exists is NP-complete. The result holds even if

each hospital has capacity 1, and the preference list of each single resident,

couple and hospital is derived from a strictly-ordered master list of hospitals,

pairs of hospitals, and residents, respectively.10

The parameterized complexity of the problem of finding a stable match-

ing in an hrc instance has been considered in Refs. [87] and [428], as indi-

cated by the following results.

Theorem 5.18 ([428]). Given an instance I of hrc, the problem of de-

ciding whether a stable matching exists is W[1]-hard relative to parameter-

ization |RC |, where RC is the set of couples in I. The result holds even if

each hospital has capacity 1.

Theorem 5.19 ([87]). Given an instance I of hrc, the problem of finding

a stable matching or reporting that none exists belongs to FPT if (i) the

hospitals’ lists are derived from a strictly-ordered master list of residents,

and (ii) the problem is parameterized by |RC |, where RC is the set of couples

in I.

Marx and Schlotter [428] also considered the parameterized complexity of

the problem of finding a maximum cardinality stable matching (or reporting

that none exists), given an instance of hrc. They proved that if W[1]6=FPT,

there is no FPT local search algorithm for this problem if it is parameterized

by l, the size of the neighbourhood to be searched, even if each hospital has

capacity 1. However if the problem is parameterized by both l and |RC |,
the number of couples, then there is an FPT local search algorithm (with

no assumption on the hospital capacities).

Biró et al. [87] developed a range of heuristics for the problem of finding

a stable matching or reporting that none exists in a given hrc instance,

10In fact the conditions under which NP-completeness is established are a little stronger:
in the hrc instance constructed, each resident (whether single or a member of a couple)
has a preference list derived from a master list of individual hospitals. The preference
list of each couple c = (ri, rj) is responsive to the individual lists of each member of
the couple [387] — that is, if ri prefers hk to hl and {(hk , ht), (hl, ht)} ⊆ A(c), then c
prefers (hk , ht) to (hl, ht); similarly if rj prefers hk to hl and {(ht, hk), (ht, hl)} ⊆ A(c),
then c prefers (ht, hk) to (ht, hl).
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and subjected them to a detailed empirical evaluation based on randomly-

generated data. Klaus and Klijn [387] (see also Klaus et al. [392]) showed

that, for instances of hrc with so-called weakly responsive preferences, a

stable matching always exists and can be found in polynomial time. They

also showed that, for preferences satisfying this property, one can always ar-

rive at a stable matching, starting from an arbitrary matching, by satisfying

a sequence of blocking pairs [390].

Cantala [115] and Sethuraman et al. [526] suggested a special case of

hrc involving tiered preferences that arise from geographical constraints.

This is based on the assumption that both members of a given couple

wish to be assigned to hospitals geographically close to one another. Each

couple partitions the hospitals into regions (both members of the couple

must agree on this partition, although the partitions need not be the same

for all couples). Each couple ranks in strict order of preference the regions

that form their partition (so, for example, the couple may decide that they

prefer to be assigned to hospitals in the West of Scotland rather than in

Northern Scotland). Again, both members of the couple must agree on this

ranking. This is the point of departure for the models in the two papers.

In the model of Cantala [115], the couple then rank in order of preference

their pairs of acceptable hospitals that belong to each region. When inter-

preting the couple’s preference structure, their preference over regions has

first priority, followed by their preference over pairs of hospitals. Cantala

showed that, even if preference lists in a given hrc instance are structured

this way, an instance may not admit a stable matching.

In the model of Sethuraman et al. [526], each member of the couple

has a strict preference list over their acceptable hospitals in each region.

These two individual preference lists need not agree. So, for example, the

preference list of a resident ri who belongs to a couple (ri, rj) might have

the following form:

h1,1 . . . h1,n1
h2,1 . . . h2,n2

. . . hk,1 . . . hk,nk

where the couple have identified the regions as R1, . . . , Rk (preferring Rp

to Rq whenever p < q), and {hp,1, . . . , hp,np
} is the set of hospitals that ri

finds acceptable in region p (1 ≤ p ≤ k).

The stability definition in this context is classical (Gale–Shapley) sta-

bility. Thus we have a standard hr instance with an additional constraint

that both members of each couple should either be assigned to the same

region, or both should be unassigned. Sethuraman et al. [526] devised an



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

5.3. hr with couples 251

LP-based method to find a stable matching for an instance of this prob-

lem, or report that none exists. However Cheng et al. [148] observed that

the additional constraint satisfies the identification property as defined in

Sec. 2.10.8 since the members of a couple agree on a common ranking of the

regions (see Ref. [148] for further explanation). Cheng et al. showed that

the problem can be solved in O(n1n2) time using their framework, where

n1 and n2 are the numbers of residents and hospitals respectively.

We close this section by remarking that Aldershof and Carducci [38]

described a genetic algorithm for hrc, and by giving three further citations

relevant to hrc that were not referred to by Biró et al. [91], namely Refs.

[74, 579, 580].

5.3.4 Consistent couples

A natural special case of hrc arises when the preference list of each couple is

consistent in a precise sense [444]. That is, suppose that ck = (ri, rj) ∈ RC .

Their preference list ≺ck over a subset of H ×H is consistent if there exist

individual preference lists ≺ri and ≺rj for ri and rj respectively, each over

a subset of H , such that, if (hp1
, hq1) and (hp2

, hq2) are two distinct pairs

in H ×H , then (ri, rj) prefers (hp1
, hq1) to (hp2

, hq2) relative to ≺ck only if

(i) either ri prefers hp1
to hp2

relative to ≺ri , or hp1
= hp2

, and (ii) either

rj prefers hq1 to hq2 relative to ≺rj , or hq1 = hq2 .
11 Here a matching is

defined as in the hrc case, and stability is defined as in Definition 5.13. We

refer to this restriction of hrc as the Hospitals / Residents problem with

Consistent Couples (hrcc).

We first note that an instance of hrcc need not admit a stable matching.

For, consider the hrc instance I shown in Fig. 5.6. Clearly I is an instance

of hrcc, and we have already observed that I does not admit a stable

matching. Moreover consistent couples do not make it any easier to decide

whether a stable matching exists, as indicated by the following result.

11In fact consistent preference lists need not be responsive (see Footnote 10 for a defini-
tion of responsive preferences). To see this, suppose that the preference list of a couple
c = (r1, r2) includes the pairs (h1, h3), (h2, h3), (h1, h4) and (h2, h4) in that order. Then
this list is responsive to the individual preference lists for r1 and r2 where r1 prefers h1

to h2 and r2 prefers h3 to h4. However c’s list is not consistent with the individual lists
of r1 and r2. Also we remark that consistent preferences need not be weakly responsive
as defined by Klaus and Klijn [387], and hence their polynomial-time algorithm for hrc
with weakly responsive preferences does not automatically apply to hrcc. This is due
to the fact that weakly responsive preferences must allow one member of a couple the
possibility of being unassigned, which need not be the case with consistent preferences.
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Theorem 5.20 ([444]). Let I be an instance of hrcc. The problem of de-

ciding whether I admits a stable matching (where stability is defined relative

to Definition 5.13) is NP-complete. The result holds even if the preference

list of each single resident and the joint preference list of each couple is of

length at most 3, the preference list of each hospital is of length at most 6,

and each hospital has capacity at most 2.

We remark that, by inspection of the preferences lists constructed in the

proof of Theorem 5.17 (see Ref. [87]), it turns out that this theorem for

hrc also applies to hrcc, and hence we can also deduce NP-completeness

for the restriction of hrcc in which the preference lists are derived from

master lists, and each hospital has capacity 1.

We can instead define the stability of a matching in terms of classical

(Gale–Shapley) stability, relative to the preference lists of the individual

residents and hospitals (as in Definition 1.8). (Of course, in a given match-

ing, an assigned couple must still obtain a pair of hospitals that they find

mutually acceptable according to their joint list). Note that if the joint

preference list of a couple is consistent, then the derived individual prefer-

ence lists for the two residents in the couple are unique, and therefore the

notion of stability is not dependent on any particular choice of these indi-

vidual lists. A matching that satisfies classical stability is stable relative to

Definition 5.13, but the converse is not true in general. It turns out that,

in contrast to Theorem 5.20, finding a stable matching or reporting that

none exists can be accomplished in polynomial time for classical stability,

given an hrcc instance.

Theorem 5.21 ([444]). Let I be an instance of hrcc. There is an O(m)

algorithm that finds a stable matching or reports that none exists (where

the stability definition is classical stability defined relative to the preference

lists of the individual residents and hospitals), where m is the sum of the

lengths of the individual residents’ lists in I.

5.3.5 Inseparable couples

A natural restriction of hrcc arises when the joint preference list of each

couple (ri, rj) has a very specific structure: that is, each element is of the

form (hk, hk) for some hospital hk ∈ H [444]. Thus ri and rj wish to be

either assigned to the same hospital, or both be unassigned. We refer to this

restriction of hrcc as the Hospitals / Residents problem with Inseparable

Couples (hric).
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As is the case for hrc and hrcc, an instance of hric need not admit

a stable matching (where stability is as defined in Definition 5.13). To see

this, observe that the hrc instance shown in Fig. 5.7, which admits no

stable matching, is an instance of hric.

Moreover, even the restricted nature of hric is unlikely to lead to a

polynomial-time algorithm for finding a stable matching (or reporting that

none exists), as Theorem 5.20 also holds for instances of hric [444].

Given the structure of a couple ck = (ri, rj)’s preference list in an hric

instance, it is natural to replace (ri, rj) by a single entity ck whose pref-

erence list is obtained from that of (ri, rj) by replacing each occurrence of

(hp, hp) by hp. Each single resident occupies one post at a given hospital,

whilst each couple occupies two posts. This formulation of hric has a natu-

ral generalisation to the case where each resident ri ∈ R has a size si ∈ Z
+,

indicating the number of posts that ri occupies at any hospital. Hospitals

rank residents of any size as a single entity. We refer to this variant of hric

as the Hospitals / Residents problem with Sizes (hrs) [444].

Let I be an hrs instance and let M be an assignment in I. Given a

hospital hj ∈ H , we denote
∑{si : ri ∈ M(hj)} by OM

j and refer to this as

the occupancy of hj in M . We say that hj is undersubscribed if OM
j < cj .

A matching is an assignment M such that |M(ri)| ≤ 1 for each ri ∈ R,

and OM
j ≤ cj for each hj ∈ H . In other words, each resident is assigned to

at most one hospital, and the sum of the sizes of the residents assigned to

a hospital does not exceed its capacity. A pair (ri, hj) ∈ R × H blocks a

matching M , or is a blocking pair for M , if

(1) ri is unmatched, or ri prefers hj to M(ri), and

(2) OM
j + si ≤ cj , or hj prefers ri to each of residents rk1

, . . . rkt
∈ M(hj),

such that

OM
j + si −

t
∑

p=1

skp
≤ cj .

A matching in I is stable if it admits no blocking pair.

The definition implies that hj could participate in a blocking pair with

ri if either (i) hj currently has room for ri, or (ii) hj can make room for

ri by rejecting a set of residents, each of whom it finds worse than ri. A

matching is stable if it admits no blocking pair.

We assume without loss of generality that, for each ri ∈ R and for each

hospital hj on ri’s preference list, si ≤ cj , for otherwise (ri, hj) could never

belong to a stable matching, nor could (ri, hj) form a blocking pair.
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Residents’ preferences Hospitals’ preferences
r1 : 1 : h2 h1 h1 : 2 : r1 r3 r2
r2 : 1 : h1 h2 h2 : 1 : r2 r1
r3 : 2 : h1

Fig. 5.8 An instance of hric with no stable matching [444]

Figure 5.8 illustrates an hrs instance I, due to McDermid and Manlove

[444], that admits no stable matching. In this figure, next to each resident

ri we show si and then ri’s preference list. As before, next to each hospital

hj we show cj followed by hj ’s preference list. Suppose that M is a stable

matching in I. If (r3, h1) ∈ M , then (r1, h2) ∈ M , for otherwise (r1, h1)

blocks M . But then (r2, h2) blocks M . Hence r3 is unassigned in M . Thus

(r2, h1) ∈ M , for otherwise (r2, h1) blocks M . Hence (r1, h2) ∈ M , for

otherwise (r1, h2) blocks M . But then (r3, h1) blocks M , a contradiction.

McDermid and Manlove [444] proved the following algorithmic results

for hrs.

Theorem 5.22 ([444]). Given an instance I of hrs, the problem of de-

ciding whether I admits a stable matching is NP-complete. The result holds

even if the size of each resident and the capacity of each hospital is at most

2, and the length of each preference list is at most 3. However, if each hospi-

tal’s list is of length at most 2 (and the sizes of the residents, the capacities

of the hospitals and the lengths of the residents’ lists are unrestricted), a

stable matching always exists and can be found in O(m) time, where m is

the number of acceptable resident–hospital pairs.

The stability definition for hrs assumes that if a resident ri prefers a

hospital hj to M(ri), and hj prefers ri to a set of residents of total size that

is sufficient to free up enough space for ri, then (ri, hj) forms a blocking

pair. This includes the case, for example, where ri has size 1, and hj is

assigned a single resident of size 10. Thus, the occupancy of hj will decrease

by 9 if the blocking pair is satisfied. An alternative definition would allow

a hospital only to participate in a blocking pair if its occupancy would not

decrease as a consequence of satisfying the blocking pair. The algorithmic

complexity of finding a stable matching (or reporting that none exists) in

hrs is open for this alternative definition of stability.

A version of hrs, called the Unsplittable Stable Marriage problem, was

studied previously by Dean et al. [161]; their problem differs from hrs in

that they permit a hospital hj’s capacity to be exceeded by the assignment
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of a resident to hj . They provided a polynomial-time algorithm that finds

a stable matching in which the capacity of each oversubscribed hospital is

exceeded by at most the size of its largest acceptable resident.

5.4 Many–many stable matching

5.4.1 Introduction

As noted in Sec. 1.3.6.2, many–many extensions of sm (and by implication

hr) have been considered in the literature [544, 57, 212, 426, 182, 67, 398,

189]. These extensions have variously been referred to as the many–many

(bipartite) stable matching (or marriage) problem [543, 189], the multiple

partner stable marriage problem [67] and the bipartite stable b-matching

problem [212]. What is, however, common to these sources is that the

problems are most often referred to in terms of assigning workers to firms,

where each agent can be multiply assigned (up to a given capacity). We

will therefore refer to the general many–many bipartite stable matching

problem as the Workers / Firms problem (wf).

Two variations of the basic wf model have been considered in the lit-

erature. The first version, which we denote by wf-1, involves each worker

ranking in strict order of preference a set of individual acceptable firms,

and vice versa for each firm. In the second version, denoted by wf-2, each

worker ranks in strict order of preference all possible subsets of firms, and

vice versa for the each firm. Bansal et al. [67] noted that wf-1 has generally

been studied mainly by the computer science community, whilst the eco-

nomics community has mainly focused on wf-2. One reason for this is that

wf-2 suffers from the drawback that the length of an agent’s preference list

is in general exponential the number of agents. A consequence of this is

that the practical applicability of any algorithm for wf-2 would be severely

limited. On the other hand, this problem does not arise with wf-1.

This section is organised as follows. In Sec. 5.4.2 we define formally

the basic wf model. We then define wf-1, and discuss structural and

algorithmic results for this problem, in Sec. 5.4.3. We do likewise for wf-2

in Sec. 5.4.4.

5.4.2 Definition of the basic wf model

An instance I of wf involves a set W = {w1, . . . , wn1
} of workers and a set

F = {f1, . . . , fn2
} of firms. The agents are the members of W ∪ F . Each
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agent ak ∈ W ∪ F has a positive integral capacity denoted by c(ak). Also

there is a set E ⊆ W × F of acceptable worker–firm pairs. Each worker

wi ∈ W has an acceptable set of firms A(wi), where

A(wi) = {fj ∈ F : (wi, fj) ∈ E}.

Similarly each firm fj ∈ H has an acceptable set of workers A(fj), where

A(fj) = {wi ∈ W : (wi, fj) ∈ E}.

An assignment M is a subset of E. If (wi, fj) ∈ M , wi is said to be

assigned to fj , and fj is assigned to wi. For each ak ∈ W ∪ F , the set

of assignees of ak in M is denoted by M(ak). An agent ak ∈ W ∪ F is

undersubscribed, full or oversubscribed according as |M(ak)| is less than,

equal to, or greater than c(ak), respectively.

The definition of a stable matching in I depends on the notion of pref-

erence, and in particular whether agents have preferences over individual

agents or over subsets of agents. The former case leads to wf-1, whilst the

latter leads to wf-2. The concept of a stable matching in each of these

cases is defined in the following subsections.

5.4.3 wf-1: preferences over individuals

The variant wf-1 of wf is obtained when each agent ak ∈ W ∪ F has

a strictly-ordered preference list over A(ak). In an instance I of wf-1, a

matching is an assignment M in I such that |M(ak)| ≤ c(ak) for each

ak ∈ W ∪ F . A pair (wi, fj) ∈ E\M blocks a matching M , or is a blocking

pair for M , if (i) either wi is undersubscribed or prefers fj to some member

ofM(wi), and (ii) either fj is undersubscribed or preferswi to some member

of M(fj). M is said to be stable if it admits no blocking pair.

Bäıou and Balinski [57] modelled wf-1 in terms of the marriage graph

defined in Sec. 2.10.5, and they used this representation to prove a number

of structural and algorithmic results. Firstly, they showed that a stable

matching always exists in I and can be found in O(n2) time, where n =

max{n1, n2}. They then showed, given an agent ak ∈ W ∪F and given two

stable matchings M , M ′ in I, that |M(ak)| = |M ′(ak)|, and if |M(ak)| <
c(ak) then M(ak) = M ′(ak) (thus generalising Theorem 1.11 for hr).

In order for agents to compare their partners in two stable match-

ings, the authors introduced the max–min criterion which states that an

agent ak ∈ W ∪ F prefers one stable matching M to another M ′ if (i)

|M(ak)| ≥ |M ′(ak)| and (ii) ak prefers the worst assignee in M(ak) to that
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in M ′(ak). On this basis, the authors showed that worker-optimal and

firm-optimal stable matchings (generalising resident-optimal and hospital-

optimal stable matchings in the hr context) exist and can be found in

O(n2) time. Moreover by ordering stable matchings according to the max–

min criterion, Bäıou and Balinski proved that the set of stable matchings

in I forms a lattice.

Bansal et al. [67] also studied wf-1. As noted in Sec. 2.10.8, they de-

fined a meta-rotation in a given wf-1 instance I, which generalises of the

concept of a rotation in smi (see Sec. 1.3.4.3). They proved that in I, the

closed subsets of the meta-rotation poset are in 1–1 correspondence with

the stable matchings. On the basis of this result, the authors gave an

O(n6) algorithm for finding an egalitarian stable matching in I — in such

a stable matching, which generalises the corresponding notion for sm (see

Sec. 1.3.4.1), the sum of the ranks of the agents’ partners is minimised.

An O(n3(log n)2) algorithm for the same problem was given by Eirinakis

et al. [189]. This latter algorithm can be extended (with unchanged time

complexity) to the case where preference lists are weighted, and we seek a

minimum weight stable matching — in this matching, which again gener-

alises the same concept for sm (see Sec. 1.3.4.1), the sum of the weights of

the agents’ partners is minimised. In another paper, Eirinakis et al. [190]

gave an O(n2) algorithm to find a minimum total regret stable matching —

this is a stable matching that minimises the maximum total regret over all

agents, where the total regret for any agent ak ∈ W ∪ F is the sum of the

ranks of ak’s partners in M .

Eirinakis et al. [189] also gave an O(n2) algorithm to find all the stable

pairs in I — these are the worker–firm pairs that appear in some stable

matching in I. Let S denote the set of stable matchings in I. The authors

also gave an O(n2 + n|S|) algorithm to list all members of S.
As noted in Sec. 2.4, Fleiner [212] gave an LP-based characterisation of

stable matchings in an instance of wf-1. Also, as mentioned in Sec. 2.5,

Eirinakis et al. [189] gave a csp encoding of a wf-1 instance. Further, we

mention that, given an instance I of wf-1 with ties, one can generalise the

definitions of weakly stable, strongly stable and super-stable matchings in

hrt (see Sec. 1.3.5) to I. We refer the reader to Sec. 3.5.2 for details of

an algorithm for finding a strongly stable matching or reporting that none

exists in I. We close this section by remarking that, in the same sense that

sr is a non-bipartite version of sm, sf (see Sec. 4.8.4) is a non-bipartite

version of wf-1.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

258 Further stable matching problems

5.4.4 wf-2: group preferences

wf-2 is the variant ofwf where agents have group preferences. That is, each

worker wi ∈ W has a strictly-ordered preference list over a subset S(wi)

(wi’s acceptable sets of partners) of P(F )\{∅}, where ⋃

S∈S(wi)
S = A(wi)

(hence wi’s acceptable partners are precisely the agents that collectively

belong to wi’s acceptable sets of partners). The preference list for a firm

fj ∈ F is defined similarly. In an instance I of wf-2, a matching is an

assignment M such that, for each ak ∈ W ∪ F , either M(ak) = ∅ or

M(ak) ∈ S(ak) .
In an instance of wf-2, it is no longer necessary to explicitly retain

capacity information for the agents. For, in view of the definition of a

matching, for any agent ak ∈ W ∪ F , if S ∈ S(ak) and |S(ak)| > c(ak),

then ak can simply declare S as unacceptable.

Given a worker wi ∈ W and a set S ∈ P(F )\{∅}, define Ch(wi, S) to be

wi’s most-preferred subset of S in S(wi). (That is, Ch(wi, S) is intuitively

the set of partners from among S that wi desires the most.) Ch(fj , S) is

defined similarly for a firm fj ∈ F and a set S ∈ P(W )\{∅}. A matching

M is individually rational if, for any a ∈ W ∪ F , M(a) = Ch(a,M(a)).

Thus a matching would fail to be individually rational if some agent would

prefer to reject one or more of its assignees.

A matching M in I is pairwise stable [499] if it is individually rational

and M admits no blocking pair, which is a worker–firm pair (wi, fj) ∈ (W ×
F )\M such that fj ∈ Ch(wi,M(wi)∪{fj}) and wi ∈ Ch(fj ,M(fj)∪{wi}).
In a blocking pair, wi and fj would prefer to be assigned to sets of partners

that include one another than to remain with their current assignees.

A wf-2 instance need not admit a pairwise stable matching — see Ex-

ample 2.7 in Ref. [514] for more details. However it turns out that the

existence of such a matching is guaranteed if the agents’ preferences satisfy

a property known as substitutability [374]. The preference list of a worker

wi ∈ W is substitutable [374] if, for any set S ∈ S(wi) containing distinct

firms fj, fk, if fj ∈ Ch(wi, S) then fj ∈ Ch(wi, S\{fk}). (That is, wi’s

desire for fj does not depend on the presence of fk.) Substitutability for a

firm fj ∈ F is defined similarly.

A stronger condition than substitutability that has been considered in

the literature is responsiveness [500]. The preference list of a workerwi ∈ W

is responsive [500] if (i) for any S ∈ S(wi) and for any fj ∈ A(wi)\S, wi

prefers S ∪ {fj} to S, and (ii) for any two subsets S, S′ ∈ S(wi) such

that S′ = (S\{fj}) ∪ {fk} for two distinct firms fj ∈ S and fk ∈ S′, wi
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prefers S′ to S if and only if wi prefers {fk} to {fj}. (That is, if one set

of assignees is obtained from another by adding an acceptable firm, then

the worker prefers the larger set of assignees, and if two sets of assignees

differ by replacing one firm fj by another, fk, then the worker prefers the

set with the most-preferred firm from among fj and fk).Responsiveness

for a firm fj ∈ F is defined similarly. Responsive preferences are clearly

substitutable.

Roth [498] proved that, given an instance of wf-2 where every agent’s

preference list is substitutable, a pairwise stable matching always exists.

Moreover he gave an algorithm for finding one, and proved the existence

of worker-optimal and firm-optimal stable matchings. Mart́ınez et al. [426]

gave an algorithm to compute the entire set of pairwise stable matchings in

this context. Blair [97] proved that the set of pairwise stable matchings in an

instance of wf-2, where again every agent’s preference list is substitutable,

forms a lattice. As mentiond in Sec. 2.6.4, Kojima and Ünver [398] showed

that, given an instance of wf-2, and starting from an arbitrary matching,

one can arrive at a pairwise stable matching by satisfying a sequence of

blocking pairs, as long as the agents on one side have responsive preferences,

whilst the agents on the other side have substitutable preferences.

A drawback of the pairwise stability concept is that a pairwise stable

matching is only robust against two agents who might act together to un-

dermine it. A more powerful stability definition, called setwise stability

was formulated by Sotomayor [544], which prevents a matching from be-

ing undermined by a coalition of agents who could improve relative to it.

Intuitively, a matching M is setwise stable [544] if there is no coalition of

agents who, by forming new partnerships only among themselves, possibly

dissolving some partnerships of M and possibly keeping other ones, can all

obtain a strictly preferred set of partners. Formally, following Echenique

and Oviedo [182], M is setwise stable if it is individually rational and there

is no triple (W ′, F ′,M ′), where W ′ ⊆ W , F ′ ⊆ F and M ′ is a matching,

such that (i) W ′ ∪ F ′ 6= ∅, and for all ak ∈ W ′ ∪ F ′, (ii) M ′(ak) ∈ S(ak),
(iii) M ′(ak)\M(ak) ⊆ W ′ ∪ F ′, (iv) ak prefers M ′(ak) to M(ak), and (v)

M ′(ak) = Ch(ak,M
′(ak)). Clearly a setwise stable matching is pairwise

stable.

Under certain conditions, setwise stable matchings are bound to exist.

The preference list of an agent ak ∈ W ∪F is strongly substitutable [182] if,

for any S, S′ ∈ S(ak) such that ak prefers S to S′, and for any al ∈ A(ak),

if al ∈ Ch(ak, S
′ ∪{al}) then al ∈ Ch(ak, S ∪{al}). Echenique and Oviedo

[182] proved that, given a wf-2 instance where the preferences on one side



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

260 Further stable matching problems

are substitutable and those on the other side are strongly substitutable, the

sets of pairwise and setwise stable matchings coincide. Results above then

indicate that in such a case, there is an algorithm to find a setwise stable

matching [499] and the set of such matchings forms a lattice [97].

Note that a non-bipartite version of wf-2 with substitutable preferences

was considered in Sec. 4.8.7. Further sources that are relevant in the wf-2

context are Refs. [501, 41–43,398, 117, 189].

5.5 The Student–Project Allocation Problem

5.5.1 Introduction

In many university departments, students seek to undertake a project in a

given field of speciality as part of the upper level of their degree programme.

Typically a wide range of available projects is offered, and usually the

total number of project places exceeds the number of students, to provide

something of a choice. Also, typically each lecturer will offer a variety of

projects, but does not necessarily expect that all will be taken up.

Each student has preferences over the available projects that she finds

acceptable, whilst a lecturer will normally have some form of preference list

over the projects she offers and/or the students who find them acceptable.

There may also be upper bounds on the number of students that can be

assigned to a particular project, and the number of students that a given

lecturer is willing to supervise. In this section we consider the problem of

allocating students to projects based on these preference lists and capacity

constraints – the so-called Student–Project Allocation problem (spa).

Variants of spa arise according to the nature of the preference lists

that lecturers provide. In the case of some centralised matching schemes

that assign students to projects, lecturer preferences are not permitted

[485,563,47]. However at the time of writing, the Department of Computer

Science at the University of York permits lecturer preferences over students

in its centralised student–project allocation process [179, 372, 568]. This

leads to our first variant of spa, namely the Student–Project Allocation

problem with lecturer preferences over Students (spa-s) [23], in which each

lecturer l ranks in order of preference the students who find acceptable

at least one project that l offers. Such a preference list may reflect l’s

assessment of the students’ academic suitability for her projects.

An alternative variant of spa is the Student–Project Allocation prob-

lem with lecturer preferences over Projects (spa-p) [422,346], in which each
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lecturer l ranks in order of preference the projects that she offers. This

preference list may reflect the possibility that l prefers to supervise projects

that are closely connected with her research, whilst the remaining projects

that l offers (perhaps only proposed to ensure that the students have ade-

quate choice) have a lesser priority. The final variant is a hybrid version of

spa-s and spa-p. In the Student–Project Allocation problem with lecturer

preferences over Student–Project pairs (spa-(s,p)), each lecturer l has a

preference list that depends on not just the students who find acceptable

a project that l offers, but also the particular projects of l’s that these

students would undertake.

Although the spa problem model and its variants are introduced and

motivated in the context of Student–Project allocation, they are equally

valid in other scenarios, for example where applicants seek posts at large

organisations, each split into several departments.

In this section we define formally each of these variants of spa. We then

describe structural and algorithmic results for these problem models. The

section is organised so that spa-s, spa-p and spa-(s,p) are dealt with in

Secs. 5.5.2, 5.5.3 and 5.5.4 respectively.

5.5.2 Lecturer preferences over students: spa-s

In this section we consider spa-s. We define an instance I of the problem

formally and discuss related work in Sec. 5.5.2.1. We give an algorithm for

finding a stable matching in I in Sec. 5.5.2.2, and in Sec. 5.5.2.3 we describe

properties of stable matchings in I. The algorithm given in Sec. 5.5.2.2

is student-oriented; in Sec. 5.5.2.4 we briefly discuss a counterpart that

is lecturer-oriented. Finally, some open problems for spa-s are given in

Sec. 5.5.2.5.

5.5.2.1 Introduction

We begin with a formal definition of spa-s. An instance of spa-s comprises a

set S = {s1, s2, . . . , sn1
} of students, a set P = {p1, p2, . . . , pn2

} of projects,

and a set L = {l1, l2, . . . , ln3
} of lecturers. Each student si supplies a

preference list, ranking a subset of P in strict order. If project pj appears

on si’s preference list, we say that si finds pj acceptable. Denote by A(si)

the set of projects that si finds acceptable.

Each lecturer lk offers a non-empty set of projects Pk, where

P1, P2, . . . , Pn3
partitions P . Lecturer lk supplies a preference list, denoted
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by Lk, ranking in strict order of preference those students who find at least

one project in Pk acceptable. Also, lk has a capacity constraint dk, indi-

cating the maximum number of students that she is willing to supervise.

Similarly, each project pj carries a capacity constraint cj , indicating the

maximum number of students that could be assigned to pj. We assume

that max{cj : pj ∈ Pk} ≤ dk ≤ ∑{cj : pj ∈ Pk}.
For any pj ∈ Pk, we denote by Lj

k the projected preference list of lk for

pj — this is obtained from Lk by deleting those students who do not find

pj acceptable. In this way, the ranking of Lj
k is inherited from Lk.

An assignment M is a subset of S × P such that:

(1) (si, pj) ∈ M implies that pj ∈ A(si) (i.e., si finds pj acceptable).

(2) For each student si ∈ S, |{(si, pj) ∈ M : pj ∈ P}| ≤ 1.

A number of definitions for spa-s follow by a straightforward analogy from

the definitions of the corresponding terms in the hr context (see Sec. 1.3.2).

Firstly, if (si, pj) ∈ M , we say that si is assigned to pj , and pj is assigned

si. For notational convenience, if si is assigned in M to pj , we may also

say that si is assigned to lk, and lk is assigned si, where pj ∈ Pk.

For any student si ∈ S, if si is assigned in M to some project pj , we

let M(si) denote pj; otherwise we say that si is unassigned in M . For any

project pj ∈ P , we denote by M(pj) the set of students assigned to pj in M .

Project pj is undersubscribed, full or oversubscribed according as |M(pj)|
is less than, equal to, or greater than cj , respectively. Similarly, for any

lecturer lk ∈ L, we denote by M(lk) the set of students assigned to lk in M .

Lecturer lk is undersubscribed, full or oversubscribed according as |M(lk)|
is less than, equal to, or greater than dk respectively.

A matching M is an assignment such that:

(3) For each project pj ∈ P , |M(pj)| ≤ cj .

(4) For each lecturer lk ∈ L, |M(lk)| ≤ dk.

A student–project pair (si, pj) ∈ (S × P )\M blocks a matching M , or

is a blocking pair of M , if:

(1) pj ∈ A(si) (i.e., si finds pj acceptable);

(2) either si is unassigned in M , or si prefers pj to M(si);

(3) either

(a) pj is undersubscribed and lk is undersubscribed, or

(b) pj is undersubscribed, lk is full, and either si ∈ M(lk) or lk prefers

si to the worst student in M(lk), or
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Student preferences Lecturer preferences
s1 : p1 p7 l1 : s7 s4 s1 s3 s2 s5 s6 l1 offers p1, p2, p3
s2 : p1 p2 p3 p4 p5 p6 l2 : s3 s2 s6 s7 s5 l2 offers p4, p5, p6
s3 : p2 p1 p4 l3 : s1 s7 l3 offers p7, p8
s4 : p2
s5 : p1 p2 p3 p4
s6 : p2 p3 p4 p5 p6 Project capacities: c1 = 2, ci = 1 (2 ≤ i ≤ 8)
s7 : p5 p3 p8 Lecturer capacities: d1 = 3, d2 = 2, d3 = 2

Fig. 5.9 An instance of spa-s due to Abraham et al. [23]

(c) pj is full and lk prefers si to the worst student in M(pj),

where lk is the lecturer who offers pj .

A matching is stable if it admits no blocking pair.

The blocking pair definition attempts to capture the various practical

scenarios in which si and lk could both simultaneously improve relative to

M by permitting an assignment between si and pj . For a more detailed

discussion of the different cases in the blocking pair definition, see Ref. [23].

An example spa-s instance I from Ref. [23] is shown in Fig. 5.9. It

turns out that

M = {(s1, p1), (s2, p5), (s3, p4), (s4, p2), (s7, p3)}
is the unique stable matching in I.

Clearly hr is a special case of spa-s in which n2 = n3, cj = dj and

Pj = {pj} (1 ≤ j ≤ n2). Essentially the projects and lecturers are in-

distinguishable in this case. We have already seen that an hr instance

is reducible to an smi instance using the technique of “cloning” hospitals

(see Sec. 3.2.6.5). However there is no straightforward reduction involving

cloning from a spa-s instance to an hr instance, due to the projects and

lecturers being distinct entities, each having capacity constraints.

We remark that spa-s is a special case of hr-cq-nss (see Sec. 5.2.4).

An instance I of spa-s corresponds to an instance J of hr-cq in which the

students correspond to residents, the projects correspond to hospitals, and

the lecturers are represented by bounded sets of hospitals. Since every pair

of distinct bounded sets is disjoint, it follows that J is in fact an instance

of hr-cq-nss.

We now describe other related work. Fleiner [209, 211] developed a

matroid-theoretic characterisation of stable matchings in bipartite match-

ing models. This is based on imposing two ordered partition matroids,
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MA and MB, one on each side of a bipartite graph G. A matching is

an independent set that is common to both MA and MB. Moreover a

stable matching corresponds to an MAMB-kernel, and it is shown that

such a structure is bound to exist [209, 211]. Fleiner [213] noted that the

spa-s problem model may be included in this characterisation by impos-

ing a student matroid as a partition matroid, and a lecturer matroid as

the truncation of a direct sum of uniform matroids (thus ensuring that all

project and lecturer capacities are satisfied). Here the vertices on one side

of G correspond to students, the vertices on the other side correspond to

lecturers, and the edges correspond to acceptable student–project pairs (so

that G is in general a multigraph).

Also Eguchi et al. [185] (see also Ref. [555]) formulated a model for two-

sided matching problems in which preferences are based on M♮-concave

functions, which arise in discrete convex analysis. They gave an algorithm

for finding a stable matching in such a context, however the algorithm

does not, in general, run in polynomial time for an arbitrary M♮-concave

function. Their model includes the possibility of capacities and multiple

partners; moreover since linear orders gives rise to M♮-concave functions,

it follows that the model of Eguchi et al. [185] includes spa-s as a special

case.

5.5.2.2 Overview of Algorithm spa-s-student

We now present a linear-time algorithm for finding a stable matching in

a given spa-s instance I. This algorithm is student-oriented in that it

involves a series of iterations, during each of which a student applies to a

project — this is an analogous operation to a man proposing to a woman

in the context of the man-oriented Gale–Shapley algorithm. Moreover, as

we will see, the stable matching M returned by the algorithm is student-

optimal, in the sense that each student obtains the best project that she

could obtain in any stable matching. The algorithm is a generalisation of

the resident–oriented Gale–Shapley algorithm for hr [261, Section 1.6.3].

Throughout the course of the algorithm’s execution, apply operations

lead to provisional assignments between students, projects and lecturers;

such assignments can subsequently be broken during the algorithm’s exe-

cution. Also, throughout the execution, entries are possibly deleted from

the preference lists of students, and from the projected preference lists of

lecturers. We use the abbreviation delete (si, pj) to denote the operation

of deleting pj from the preference list of si, and deleting si from Lj
k, where

lk is the lecturer who offers pj.
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Initially the matching M constructed by the algorithm is empty. As

long as there is some student si who is unassigned and who has a non-

empty list, si applies to the first project pj on her list. We let lk be the

lecturer who offers pj . Immediately, (si, pj) is added to M .

If pj is oversubscribed, then lk rejects the worst student sr assigned to

pj . The pair (sr, pj) will be deleted by the subsequent conditional that

tests for pj being full. Similarly, if lk is oversubscribed, then lk rejects her

worst assigned student sr. The pair (sr, pt) will be deleted by either of the

two subsequent conditionals, where pt is sr’s assigned project in M .

Regardless of whether any rejections occurred as a result of the two sit-

uations described in the previous paragraph, we have two further (possibly

non-disjoint) cases in which deletions may occur. If pj is full, we let sr be

the worst student assigned to pj (according to Lj
k) and delete (st, pj) for

each successor st of sr on Lj
k. Similarly if lk is full, we let sr be the worst

student assigned to lk, and delete (st, pu) for each successor st of sr on Lk,

and for each project pu offered by lk that st finds acceptable.

The algorithm is described in pseudocode form in Algorithm 5.1 as Al-

gorithm spa-s-student. The following result, proved in Ref. [23], establishes

the correctness and complexity of the algorithm.

Theorem 5.23 ([23]). Every spa-s instance I admits a stable matching.

Moreover, any execution of Algorithm spa-s-student applied to I constructs

the unique stable matching in which each assigned student is assigned to

the best project that she could obtain in any stable matching, whilst each

unassigned student is unassigned in every stable matching. The algorithm

runs in O(m) time and O(n1n2) space, where m is the number of acceptable

student–project pairs, n1 is the number of students and n2 is the number of

projects.

Given the optimality property established by Theorem 5.23, the stable

matching returned by Algorithm spa-s-student is defined to be the student-

optimal stable matching.

5.5.2.3 Properties of stable matchings in an instance of spa-s

In this subsection we explore which properties of Theorem 1.11 (the “Rural

Hospitals Theorem” for hr) have analogues in the context of spa-s. Whilst

some properties do carry over, certain others, with natural analogues for

spa-s, perhaps surprisingly do not hold. The following result indicates

which properties of Theorem 1.11 do hold in the spa-s setting.
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Algorithm 5.1 Algorithm spa-s-student [23]

Require: spa-s instance I
Ensure: return the student-optimal stable matching M in I
1: M := ∅;
2: while some student si is unassigned and si has a non-empty list do

3: pj := first project on si’s list;
4: lk := lecturer who offers pj ;
5: {si applies to pj}
6: M := M ∪ {(si, pj)};
7: if pj is oversubscribed then

8: sr := worst student assigned to pj ; {according to Lj
k}

9: M := M\{(sr, pj)};
10: else if lk is oversubscribed then

11: sr := worst student assigned to lk; {according to Lk}
12: pt := M(sr);
13: M := M\{(sr, pt)};
14: end if

15: if pj is full then
16: sr := worst student assigned to pj ; {according to Lj

k}
17: for each successor st of sr on Lj

k do

18: delete (st, pj);
19: end for

20: end if

21: if lk is full then
22: sr := worst student assigned to lk; {according to Lk}
23: for each successor st of sr on Lk do

24: for each project pu ∈ Pk ∩A(st) do
25: delete (st, pu);
26: end for

27: end for

28: end if

29: end while

30: return M ;

Theorem 5.24 ([23]). For a given spa-s instance, the following state-

ments hold:

(i) each lecturer has the same number of students in all stable matchings;

(ii) exactly the same students are unassigned in all stable matchings;

(iii) a project offered by an undersubscribed lecturer has the same number

of students in all stable matchings.

Two key properties of Theorem 1.11 have no analogue for spa-s. Firstly,

Part (ii) of the theorem states that in hr, each hospital is assigned the same
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number of residents in any stable matching. However, in a spa-s instance,

a project offered by a lecturer who is full in one stable matching need not

be assigned the same number of students in all stable matchings (see Fig.

4 in Ref. [23] for more details).

Secondly, Part (iii) of the theorem states that in hr, any hospital that is

undersubscribed in one stable matching is assigned the same set of residents

in all stable matchings. However, in a spa-s instance, a lecturer who is

undersubscribed in one stable matching need not be assigned the same set

of students in all stable matchings (see Fig. 3 in Ref. [23] for more details).

5.5.2.4 Lecturer-oriented algorithm

A lecturer-oriented counterpart of Algorithm spa-s-student, namely Algo-

rithm spa-s-lecturer, is presented in Ref. [23]. Algorithm spa-s-lecturer

produces the lecturer-optimal stable matching, in which each lecturer ob-

tains the best set of students that she could obtain in any stable matching.

However the definition of “best” needs some care in the spa-s context. To

obtain a precise definition of lecturer-optimality, we require to define the

prefers relation on pairs of stable matchings for a given lecturer.

Let M and M ′ be two stable matchings for a given instance of spa-s.

By Theorem 5.24, we know that |M | = |M ′| and |M(lk)| = |M ′(lk)|. For

a given lecturer lk who is assigned different sets of students in M and M ′,

suppose that

M(lk) \M ′(lk) = {s1, . . . , sr}

and

M ′(lk) \M(lk) = {s′1, . . . , s′r},

where, in each case, the students are enumerated in the order in which they

appear in Lk. If lk prefers si to s′i for all i (1 ≤ i ≤ r) we say that lk prefers

M to M ′. Alternatively, and equivalently, lk prefers M to M ′ if there is

a one-to-one mapping f from M ′(lk) \ M(lk) to M(lk) \ M ′(lk) with the

property that lk prefers f(s′i) to s′i for all s
′
i ∈ M ′(lk) \M(lk).

The following theorem summarises the key properties of the stable

matching resulting from any execution of Algorithm spa-s-lecturer, and

the complexity of that algorithm.

Theorem 5.25. For a given instance of spa-s, any execution of Algorithm

spa-s-lecturer constructs the unique stable matching M satisfying the fol-

lowing two properties:
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(i) each student is unassigned or is assigned to the worst project she has

in any stable matching;

(ii) each lecturer prefers M to any stable matching in which she has a

different set of assigned students.

The algorithm runs in O(m) time and O(n1n2) space, where m is the num-

ber of acceptable student–project pairs, n1 is the number of students and n2

is the number of projects.

5.5.2.5 Open problems

There are two interesting generalistions of spa-s that give rise to potential

avenues for future research. Firstly, if we allow ties in the preference lists

of students and lecturers, different stability definitions are possible. These

can be obtained by extending the three stability definitions that have been

applied to hrt (see Sec. 1.3.5). Under the analogue of weak stability, every

instance of spa-s with ties admits a weakly stable matching (this follows by

breaking the ties arbitrarily and applying Algorithm spa-s-student to the

resulting instance of spa-s, for example). However such matchings could

be of different sizes for a given spa-s instance with ties, and the problem

of finding a maximum weakly stable matching is NP-hard (this follows by

Corollary 3.7). Under the analogues of the two stronger stability criteria,

namely strong stability and super-stability, an instance of spa-s with ties

need not admit a matching satisfying either criterion (again this follows

by considering the analogous observations for smt — see Secs. 3.3.1 and

3.4.1). However it remains open to construct algorithms for finding such a

matching in each case, or reporting that none exists, for a given instance

of spa-s with ties.

A second direction is to consider the case that each project pj carries

a lower bound, indicating the minimum number of assignees that pj must

obtain in a given matching in order for the project to run. As in the hr case

(see Secs. 5.2.2 and 5.2.3), there are two possibilities according to whether

a project is allowed to be closed or not in a given matching. If a project can

be closed, one can extend the stability definition from Sec. 5.2.2 to the spa-

s case. As hr is a special case of spa-s, Theorem 5.2 then implies that the

problem of deciding whether, given a spa-s instance I with project lower

bounds where projects can be closed, I admits a stable matching is NP-

complete. If no project can be closed, then the stability definition for spa-s

without project lower bounds is unchanged. However, in contrast to the

case for hr-lq-2, the problem of deciding whether a stable matching exists
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need not be quite so straightforward. This is due to the fact that a given

project need not obtain the same number of assignees in all stable matchings

(see Sec. 5.5.2.3). It is open as to whether there exists a polynomial-time

algorithm for finding a stable matching or reporting that none exists, given

an instance of spa-s with lower bounds for the projects, where no project

can be closed.

5.5.3 Lecturer preferences over projects

We now consider the case that lecturers rank in order of preference the

projects that they offer, rather than the students who find their projects

acceptable. Formally, the definition of an instance I of spa-p is identical

to that of spa-s, except that the preference list of each lecturer lk ∈ L

comprises a strict ranking of the projects in Pk. The definitions of an

assignment and a matching in I are unchanged from the spa-s case, though

the stability definition is rather different.

A student–project pair (si, pj) ∈ (S × P )\M blocks a matching M , or

is a blocking pair of M , if the following conditions are satisfied relative to

M in I:

(1) pj ∈ A(si) (i.e., si finds pj acceptable);

(2) either si is unassigned or si prefers pj to M(si);

(3) pj is undersubscribed and either

(a) si ∈ M(lk) and lk prefers pj to M(si), or

(b) si /∈ M(lk) and lk is undersubscribed, or

(c) si /∈ M(lk) and lk is full and lk prefers pj to her worst project pr
satisfying M(pr) 6= ∅,

where lk is the lecturer who offers pj .

In spa-p, it turns out that a matching can be undermined not just by

a student and lecturer acting together, but also by a group of students

colluding. To this end, a blocking coalition with respect to a matching M is

defined to be a set of students {si0 , . . . , sir−1
}, for some r ≥ 2, each of whom

is assigned in M , such that sij prefers M(sij+1
) to M(sij ) (0 ≤ j ≤ r − 1,

where addition is taken modulo r).

A matching is defined to be stable if it admits no blocking pair and no

blocking coalition. Some intuition for the stability definition is given in Ref.

[422]. The following result indicates that a stable matching is guaranteed

to exist and can be found in linear time.
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Student preferences Lecturer preferences
s1 : p1 p2 l1 : p1 c1 = d1 = 1
s2 : p1 l2 : p2 c2 = d2 = 1

Fig. 5.10 A spa-p instance due to Manlove and O’Malley [422]

Theorem 5.26 ([422]). Let I be an instance of spa-p. Then I admits

a stable matching, which can be found in O(m) time, where m is the total

length of the students’ preference lists in I.

It is not difficult to find a spa-p instance where stable matchings might

have different sizes. Consider the spa-p instance I shown in Fig. 5.10. It

may be verified that each of the matchings M1 = {(s1, p1)} and M2 =

{(s1, p2), (s2, p1)} is stable in I. In practical situations, often a key priority

is to match as many students to acceptable projects as possible, so this

naturally leads one to consider the complexity of max spa-p, the problem

of finding a maximum stable matching, given a spa-p instance.

Manlove and O’Malley [422] showed that max spa-p is NP-hard and

not approximable within δ, for some constant δ > 1, unless P=NP. However

the constant δ was very close to 1; Iwama et al. [346] gave a tighter lower

bound on the approximability of max spa-p, as indicated by the following

result.

Theorem 5.27 ([346]). max spa-p is not approximable within 21/19−ε,

for any ε > 0, unless P=NP.

Iwama et al. [346] also showed that it is UGC-hard12 to approximate max

spa-p within 4/3− ε, for any ε > 0, unless P=NP.

Regarding upper bounds for the approximability ofmax spa-p, Manlove

and O’Malley gave a straightforward 2-approximation algorithm for this

problem. In fact the algorithm simply constructed an arbitrary stable

matching; it was then shown that any two stable matchings differ in size

by at most a factor of 2. Iwama et al. [346] modified this algorithm by

applying a technique of Király (see Sec. 3.2.6.2), which amounts to giving

rejected students a second chance to apply to projects on their preference

list. This resulted in the following improved upper bound.

Theorem 5.28 ([346]). max spa-p is approximable within 3/2.

12See Footnote 2 on Page 138.
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O’Malley [470] considered a stronger form of stability for spa-p than

the version defined in this section for spa-p. He referred to this stronger

version of stability as strong stability. He showed that, for a given instance

of spa-p, a strongly stable matching need not exist. Moreover, he gave a

linear-time algorithm to find a strongly stable matching or report that none

exists.

5.5.4 Lecturer preferences over student–project pairs

Recall that spa-(s,p) is the generalisation of each of spa-s and spa-p in

which lecturers have preferences over student–project pairs. This means

that a lecturer is able to express the fact that her preferences over students

may depend on the particular project that they would undertake (e.g., they

may feel that student si is better-suited to project pj1 than project pj2).

The study of spa-(s,p) was first suggested by Abraham et al. [23], and Abu

El-Atta and Moussa [29] were the first to define the problem formally.

To give a formal definition of spa-(s,p), we require to define a set B(lk)

of acceptable student–project pairs for each lecturer lk ∈ L as follows:

B(lk) = {(si, pj) ∈ S × P : pj ∈ A(si) ∩ Pk}.
That is, B(lk) contains those student–project pairs (si, pj) such that si finds

acceptable a project pj that lk offers. With this definition, an instance of

spa-(s,p) is then defined in the same way as an instance of spa-s: that is,

each lecturer ranks B(lk) in strict order of preference.

The definitions of an assignment and a matching in I are unchanged

from the spa-s case, and it turns out that the blocking pair definition is

somewhat similar, except that a little more care is necessary to deal with

the possibility that a student is trying to switch projects offered by the

same lecturer. Given a matching M , in the spa-(s,p) context we first need

to redefine M(lk) as follows:

M(lk) = {(si, pj) ∈ S × P : si ∈ M(pj) ∧ pj ∈ Pk}.
That is, M(lk) contains those student–project pairs (si, pj) such that si is

assigned to pj in M and lk offers pj . Abu El-Atta and Moussa [29] defined

a student–project pair (si, pj) ∈ (S × P )\M to block a matching M , or to

be a blocking pair of M , if:

(1) pj ∈ A(si) (i.e., si finds pj acceptable);

(2) either si is unassigned in M , or si prefers pj to M(si);

(3) either
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(3.1) pj is undersubscribed, and either

(a) si is assigned in M and M(si) ∈ Pk, and lk prefers (si, pj) to

(si,M(si)), or

(b) si is unassigned in M or M(si) /∈ Pk, and lk is undersub-

scribed, or

(c) si is unassigned in M or M(si) /∈ Pk, lk is full and lk prefers

(si, pj) to some pair (sr, pt) ∈ M(lk);

(3.2) pj is full, and lk prefers (si, pj) to some pair (sr, pj) ∈ M(lk), and

either

(a) si is assigned in M and M(si) ∈ Pk, and lk prefers (si, pj) to

(si,M(si)), or

(b) si is unassigned in M or M(si) /∈ Pk;

where lk is the lecturer who offers pj .

A matching is stable if it admits no blocking pair.

A discussion of the stability definition now follows. Parts (1) and (2)

are as before. Now consider Part 3.1, which corresponds to the case that pj
is undersubscribed. In Part 3.1(a), si is trying to change from one project

pt to another project pj, where both are offered by lk. Although pj is

undersubscribed, lk would only agree to the switch if she thinks that si is

better-suited to pj than pt. The number of students assigned to lk would

not change as a result. In Part 3.1(b), si was not previously assigned to

one of lk’s projects, and since both pj and lk are undersubscribed, lk would

accept si to do pj. In Part 3.1(c), again si was not previously assigned

to one of lk’s projects, but this time lk is full, in which case lk would

only agree to the switch if she improves by rejecting sr from pt, for some

student–project pair (sr, pt) to which she prefers (si, pj).

We now consider Part 3.2, which corresponds to the case that pj is full.

Lecturer lk would only allow si to move to pj if lk thinks that si is better-

suited to project pj than some other student sr already assigned to pj . In

Part 3.2(a), si is trying to switch projects offered by lk, and as before lk
would only allow that if she believes that si is better-suited to pj than to

M(si). However in Part 3.2(b), si was not previously assigned to one of

lk’s projects, and therefore lk would accept si to do pj.

By way of illustration, consider the spa-(s,p) instance I shown in

Fig. 5.11. It may be verified that the matching {(si, pi) : 1 ≤ i ≤ 4} is

stable in I.
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Student preferences Lecturer preferences
s1 : p2 p1 l1 : (s1, p1) (s2, p2) (s1, p2) (s3, p1) (s3, p2)
s2 : p2 p3 l2 : (s2, p3) (s3, p3) (s4, p3) (s4, p4)
s3 : p1 p2 p3
s4 : p3 p4 l1 offers p1, p2; c1 = 1, c2 = 2, d1 = 2

l2 offers p3, p4; c3 = 1, c4 = 1, d2 = 2

Fig. 5.11 A spa-(s,p) instance

Abu El-Atta and Moussa extended the student-oriented algorithm for

spa-s to the spa-(s,p) setting, establishing the following result.

Theorem 5.29 ([29]). Every instance of spa-(s,p) admits a stable

matching, and moreover such a matching can be found in O(m) time, where

m is the total length of the students’ preference lists.

Data structures for representing spa-(s,p) instances (together with the

changes that may occur to these structures during an execution of the

student-oriented algorithm in Ref. [29]) were discussed by Moussa and Abu

El-Atta [456]. The authors also described a Java implementation that gives

a visualisation of these data structures during an algorithm execution.

5.6 3D stable matching problems

One of Knuth’s research problems [394] concerned whether it is possible

to generalise sm to three sets of elements, which he referred to as men,

women and dogs. This leads to three-dimensional, or tripartite, variants

of sm, which we collectively refer to as Three-Dimensional Stable Marriage

(3dsm) problems, and consider in Sec. 5.6.1. In these problems, the goal is

to partition the sets of agents into triples (each triple consisting of a man,

a woman and a dog) such that the set of triples is stable in some sense.

Different problem models can be obtained depending on the nature of

the agents’ preference lists. For example, each agent might rank in order of

preference the pairs of other agents that they are prepared to form triples

with. We consider this preference structure in Sec. 5.6.1.1, and the generali-

sation where ties are permitted in Sec. 5.6.1.2. In the presence of preference

lists over pairs, the agents’ lists might be based on a lexicographic ordering

over the pairs – we consider this case in Sec. 5.6.1.3. Another possibility is

that the agents’ preference lists involve only individual agents (e.g., if men
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rank only women in order of preference, women’s lists contain only dogs,

and dogs rank only men). We consider this variant of 3dsm in Sec. 5.6.1.4.

Another direction is to consider three-dimensional generalisations of sr,

which we collectively refer to as 3dsr problems, and study in Sec. 5.6.2.

This time the aim is to partition the agents into disjoint unordered sets of

size 3 (intuitively to share 3-bed rooms). Preference models can be defined

similar to those indicated in the previous paragraph for 3dsm problems.

Agents might rank unordered pairs in order of preference, indicating their

rankings over potential roommates. Preferences of this nature are consid-

ered in Sec. 5.6.2.1, and the extension where ties are permitted is studied

in Sec. 5.6.2.2. Alternatively, agents might rank only individual agents in

order of preference — variants of 3dsr focusing on this model of preference

are described in Sec. 5.6.2.3. In Sec. 5.6.2.4 we consider the case that the

triples (in both a given matching and a potential blocking triple) are or-

dered, which gives rise to a variant of 3dsr that has applications to kidney

exchange. Finally Sec. 5.6.2.5 focuses on a geometric variant of 3dsr.

5.6.1 3D variants of sm

5.6.1.1 Strictly-ordered preferences over pairs

Ng and Hirschberg [465] defined the Three-Gender Stable Marriage Problem

(3gsm) as follows. An instance I comprises a set U = {m1, . . . ,mn} of

men, a set W = {w1, . . . , wn} of women and a set D = {d1, . . . , dn} of

dogs. Define the size of I to be n. Each man, woman and dog has a strict

preference list over the pairs in W ×D, U ×D and U ×W respectively.

A matching M in I is a disjoint set of n triples (i.e., each man, woman

and dog appears in exactly one triple in M). Given an agent a ∈ U∪W ∪D,

we defineM [a] to be the triple containing a, andM(a) to be the pair formed

by removing a from M [a]. Similarly, given a triple t ∈ U ×W ×D and an

agent a in t, define t(a) to be the pair formed by removing a from t. A

blocking triple is a man–woman–dog triple t ∈ U ×W ×D such that each

member a of t prefers t(a) to M(a). A matching is stable if it admits no

blocking triple.

Ng and Hirschberg [465] gave an example 3gsm instance of size 2, il-

lustrated in Fig. 5.12, that admits no stable matching: each of the four

possible matchings admits a blocking triple, as shown in Table 5.1.

Earlier, Alkan [40] had also given an example to show that there are

instances of 3gsm for which no stable matching exists. However in his
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m1 : (w1, d2) (w1, d1) (w2, d2) (w2, d1)
m2 : (w2, d2) (w1, d1) (w2, d1) (w1, d2)
w1 : (m2, d1) (m1, d2) (m1, d1) (m2, d2)
w2 : (m2, d1) (m1, d1) (m2, d2) (m1, d2)
d1 : (m1, w2) (m1, w1) (m2, w1) (m2, w2)
d2 : (m1, w1) (m2, w2) (m1, w2) (m2, w1)

Fig. 5.12 A 3gsm instance with no stable matching due to Ng and Hirschberg [465]

Table 5.1 A blocking triple for each matching in
the 3gsm instance shown in Fig. 5.12 due to Ng and
Hirschberg [465]

Matching Blocking triple

{(m1, w1, d1), (m2, w2, d2)} (m1, w1, d2)
{(m1, w1, d2), (m2, w2, d1)} (m2, w1, d1)
{(m1, w2, d1), (m2, w1, d2)} (m1, w1, d2)
{(m1, w2, d2), (m2, w1, d1)} (m2, w2, d2)

example, the agents’ preference lists were incomplete (i.e., they did not

contain all possible pairs of agents from the other two sets) and the instance

was of size 3.

Ng and Hirschberg proved the following result, which indicates that

when we move from a two-dimensional version of the stable marriage

problem to a three-dimensional version, the problem changes from being

polynomial-time solvable to NP-complete. In complexity theory, when a

parameter inherently associated with a given problem changes from 2 to 3,

the transition from polynomial-time solvability to NP-completeness is very

prevalent.

Theorem 5.30 ([465]). The problem of deciding whether a given 3gsm

instance has a stable matching is NP-complete.

As noted in Sec. 2.3.1, Subramanian [551] independently proved Theorem

5.30.

Following comments by a referee of their paper, Ng and Hirschberg [465]

observed that the preference lists in the 3gsm instance as constructed by

the reduction in their proof of Theorem 5.30 are inconsistent in general.

An example of an inconsistent preference list is that of dog d1 in the 3gsm

instance shown in Fig. 5.12. Here, d1 prefers w2 to w1 when paired with

m1, but prefers w1 to w2 when paired with m2. Thus dog d1 does not have
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a consistent preference of w1 over w2 (or vice versa). Huang [287] observed

that the preference lists in the 3gsm instance constructed by Subramanian’s

reduction [551] are not consistent in general either. Ng and Hirschberg [465]

asked whether NP-completeness for 3gsm would still hold if preference lists

did not contain such inconsistencies.

Formally, Huang [287] defined the notion of a consistent preference list

for a man as follows. Suppose that man mi ∈ U has strictly-ordered prefer-

ence lists (linear orders)≺W
mi

and ≺D
mi

over all women and dogs respectively.

Define ≺mi
to be the product order on W×D, i.e., (wj1 , dk1

) ≺mi
(wj2 , dk2

)

if and only if either (i) wj1 ≺W
mi

wj2 and dk1
= dk2

, or (ii) wj1 = wj2 and

dk1
≺D

mi
dk2

, or (iii) wj1 ≺W
mi

wj2 and dk1
≺D

mi
dk2

. Then mi’s overall pref-

erence list (i.e., his linear order over all pairs in W ×D) is consistent if it is

a linear extension of the partial order ≺mi
. The definitions of consistency

for the overall preference lists of women and dogs are analogous.

Huang [287, 288] answered Ng and Hirschberg’s open problem with the

following result.

Theorem 5.31 ([287,288]). Given a 3gsm instance with consistent pref-

erence lists, the problem of deciding whether a stable matching exists is

NP-complete.

5.6.1.2 Preferences over pairs with ties

Huang [287] also defined a notion of consistency for preference lists over

pairs that possibly involve ties. Suppose again that man mi ∈ U has

strictly-ordered preference lists (linear orders) ≺W
mi

and ≺D
mi

over the

women and dogs respectively. As in the previous subsection, let ≺mi
be the

product order on (W,≺W
mi

) and (D,≺D
mi

). Then mi’s overall preference list

≺′
mi

over all pairs in W×D (now possibly involving ties) is consistent if it is

a relaxed linear extension of ≺mi
: that is, (wj1 , dk1

) ≺mi
(wj2 , dk2

) implies

that mi prefers (wj1 , dk1
) to (wj2 , dk2

) in ≺′
mi

, and two elements are tied in

≺′
mi

only if they are incomparable in ≺mi
. The definitions of consistency

for the overall preference lists of women and dogs are analogous.

With ties in the agents’ overall preference lists, Huang [287] defined four

levels of stability, along the lines of Irving’s definitions of weak stability,

strong stability and super-stability for smt [308] (see Sec. 1.3.5). As usual,

these stability definitions are based on the absence of a blocking structure,

in this case a blocking triple. In what follows, define the degree of a triple

t with respect to a matching M , denoted by degM (t), to be the number of
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agents a in t who prefer t(a) to M(a). In each case, t is a blocking triple if

each agent a in t either prefers t(a) to M(a) or is indifferent between them,

and in addition, a further constraint may be present on degM (t), depending

on the level of stability, as follows:

• weakly stable matching: degM (t) ≥ 3;

• strongly stable matching: degM (t) ≥ 2;

• super-stable matching: degM (t) ≥ 1;

• ultra-stable matching: degM (t) ≥ 0 (i.e., no constraint on degM (t).

Notice that if the agents’ overall preference lists are strictly ordered, then

weak stability coincides with stability as defined by Ng and Hirschberg

[465].

One way of generating consistent preference lists with ties, starting from

preference lists for each agent over individual agents of the other two types,

was suggested by Huang [287] as follows. Given a man mi ∈ U and two

distinct pairs (wj1 , dk1
) and (wj2 , dk2

) in W ×D, if

rank(mi, wj1 ) + rank(mi, dk1
) < rank(mi, wj2 ) + rank(mi, dk2

)

then mi prefers (wj1 , dk1
) to (wj2 , dk2

), and if

rank(mi, wj1 ) + rank(mi, dk1
) = rank(mi, wj2 ) + rank(mi, dk2

)

then mi is indifferent between (wj1 , dk1
) and (wj2 , dk2

) (here it is as-

sumed that rank(mi, wjr ) is defined relative to ≺W
mi

for r ∈ {1, 2}, and
rank(mi, djr ) is defined relative to ≺D

mi
for r ∈ {1, 2}). The construction

of consistent preference lists with ties for women and dogs is analogous.

Huang refers to instances of 3gsm built in this way as satisfying the PON

(Preference by Ordinal Number) scheme. We will use 3gsm-pon to denote

such instances.

Huang [287, 288] established the following complexity results for prob-

lems related to finding matchings satisfying the above-mentioned levels of

stability in instances of 3gsm-pon.

Theorem 5.32 ([287,288]). Given an instance of 3gsm-pon, each of

the problems of deciding whether there exists a matching that is strongly

stable, super-stable or ultra-stable is NP-complete.

Recall from Theorem 5.31 that the problem of deciding whether a weakly

stable matching exists is NP-complete even if we are given a 3gsm instance

with consistent and strictly-ordered preference lists.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

278 Further stable matching problems

5.6.1.3 Lexicographic preferences over pairs of agents

Danilov [160] discussed a very special case of 3gsm with strictly-ordered

preferences over pairs in which men care primarily about women (and then

dogs), women primarily about men (and then dogs), whilst the dogs’ overall

preference lists over pairs are not constrained in any way. More specifically,

if a man mi ∈ U prefers (wj , dr1) to (wk, dr2), then mi prefers (wj , dr3) to

(wk, dr4) for any dogs dr3 and dr4 . This is equivalent to assuming that mi

has a strict preference list ≺W
mi

over the individual women, with his overall

list over pairs satisfying the property that, for two distinct women wj and

wk in W , mi prefers (wj , dr1) to (wk, dr2) if and only if wj ≺W
mi

wk, for

any two dogs dr1 and dr2 in D. The constraints on the women’s overall

preference lists over pairs are defined analogously. Eriksson et al. [198]

used the term lexicographically acylic preferences to describe this preference

structure.

Danilov [160] showed that, for this restriction of 3gsm, a stable matching

always exists and can be found in linear time using two applications of the

Gale–Shapley algorithm. This indicates that there is at least one non-trivial

variant of 3dsm that is solvable in polynomial time.

Theorem 5.33 ([160]). Let I be an instance of 3gsm with lexicographi-

cally acyclic preferences, and let n be the size of I. Then I admits a stable

matching, which can be found in O(n2) time.

A natural follow-on from Theorem 5.33 is to consider what happens in

the case of lexicographically cyclic preferences. Here, we are given a 3gsm

instance in which men care primarily about women (and then dogs), women

care primarily about dogs (and then men), and dogs care primarily about

men (and then women). Boros et al. defined this problem and gave an

example 3gsm instance of size 3 with lexicographically cyclic preferences

having no stable matching. They did however show that every 3gsm in-

stance of size 2 with lexicographically cyclic preferences admits a stable

matching.

For 3gsm instances of size at least 3 having lexicographically cyclic

preferences, it remains open as to whether the problem of finding a stable

matching (or reporting that none exists) is solvable in polynomial time or

NP-hard.

5.6.1.4 Preferences over individual agents

An intriguing variant of 3dsm, called the Three-Dimensional Stable Mar-

riage problem with Cyclic Preferences(3dsm-cyc) was mentioned by Ng



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

5.6. 3D stable matching problems 279

and Hirschberg [465], who attributed the problem to Knuth. An instance I

of this problem is as for 3gsm, but the difference lies in the fact that each

agent ranks only individual agents from a certain set in order of preference.

Specifically, men care only about women, women care only about dogs, and

dogs care only about men. More formally, each man mi ∈ U ranks all the

women in W in strict order of preference, but he is indifferent as to which

dog he is assigned with. (If we were to envisage mi’s preference list as

a ranking of woman–dog pairs, then it would effectively consist of n ties,

each of length n: all the pairs containing the same woman are tied.) The

preference lists of each woman and dog are constructed analogously.

Given a triple t and a man mi in t in the 3dsm-cyc context, define

t(mi) to be the woman wj ∈ W such that t = (mi, wj , dk) for some dk ∈ D.

Define t(wj) and t(dk) for a woman wj ∈ W and a dog dk ∈ D similarly.

Given a matching M and an agent a ∈ U ∪W ∪D, define M(a) to be t(a),

where t is the unique triple in M containing a.

A strongly blocking triple relative to M is a triple t ∈ U ×W ×D such

that each agent ai in t prefers t(ai) to M(ai). A matching is weakly stable

(also referred to as stable in the literature [109,198]) if it admits no strongly

blocking triple.

A weakly blocking triple relative to M is a triple t ∈ U×W×D such that

at least two agents ai in t prefer t(ai) to M(ai), and the remaining agent

ai in t either prefers t(ai) to M(ai) or is indifferent between them (where

preference lists are strictly ordered, the case of indifference is equivalent to

the case that t(ai) = M(ai)). A matching is strongly stable if it admits no

weakly blocking triple.

Boros et al. [109] proved that every instance of 3dsm-cyc of size at

most 3 admits a weakly stable matching. Eriksson et al. [198] extended

this result to instances of size 4, and conjectured that every instance of

3dsm-cyc admits a weakly stable matching. This problem is still open,

though Biró and McDermid [94] showed that if preference lists are allowed

to be incomplete, then a weakly stable matching need not exist.

Formally, define 3dsmi-cyc to be the variant of 3dsm-cyc in which

agents may have unacceptable partners (i.e., each man ranks in order of

preference his acceptable set of women, and the women and dogs do likewise

with respect to the dogs and men respectively). In a 3dsmi-cyc instance

I, a matching M is a disjoint set of triples such that M(a) is acceptable for

a, for each agent a who is assigned in M . The definitions of a strongly and

a weakly blocking triple are extended from the 3dsm-cyc case by noting

that each agent prefers to be assigned (to an acceptable partner) than to
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m1 : w1 w3 w2 w1 : d1 d3 d2 d1 : m2 m3 m1

m2 : w2 w1 w3 w2 : d2 d1 d3 d2 : m1 m2 m3

m3 : w1 w2 w3 w3 : d2 d1 d3 d3 : m1 m2 m3

Fig. 5.13 A 3dsm-cyc instance with no strongly stable matching due to Irving [311]

Table 5.2 A blocking triple for a matching containing each possible triple
involving m1 in the 3dsm-cyc instance shown in Fig. 5.13

Matching triple Blocking triple

(m1, w1, d1) (m3, w1, d1)
(m1, w1, d2) (m1, w1, d3)

(m1, w1, d3)

{

(m2, w2, d2) if this is not a matching triple
(m3, w1, d1) otherwise

(m1, w2, d1) (m1, w1, d1)
(m1, w2, d2) (m1, w3, d2)

(m1, w2, d3) (m1, w2, d2)
(m1, w3, d1) (m1, w3, d2)

(m1, w3, d2)

{

(m2, w2, d1) if this is not a matching triple
(m1, w1, d3) otherwise

(m1, w3, d3) (m1, w3, d2)

remain unassigned. Biró and McDermid [94] gave a 3dsmi-cyc instance

of size 6 with no weakly stable matching. They also proved the following

complexity result concerning weakly stable matchings in 3dsmi-cyc.

Theorem 5.34 ([94]). The problem of deciding whether a given instance

of 3dsmi-cyc admits a weakly stable matching is NP-complete.

On the other hand, a strongly stable matching need not exist in a given

instance of 3dsm-cyc. Irving [311] showed this via a 3dsm-cyc instance

of size 3, illustrated in Fig. 5.13. For each possible triple t containing m1,

a blocking triple for a matching containing t is indicated in Table 5.2.

Biró and McDermid [94] gave the following NP-completeness result for

strongly stable matchings in 3dsm-cyc.

Theorem 5.35 ([94]). The problem of deciding whether a given instance

of 3dsm-cyc admits a strongly stable matching is NP-complete.

Huang [290] considered the case that individual preference lists in a

given instance of 3dsm-cyc may involve ties — we denote by 3dsmt-cyc

this generalisation of the problem. Recall the definition of the degree of
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a blocking triple from Sec. 5.6.1.2. This definition can also be applied to

the 3dsmt-cyc context, and by using it we can also obtain the notions of

a weakly stable, strongly stable and super-stable matching in a 3dsmt-cyc

instance, as previously defined in Sec. 5.6.1.2. Huang proved the follow-

ing result concerning the algorithmic complexity of computing super-stable

matchings.

Theorem 5.36 ([290]). The problem of deciding whether a given instance

of 3dsmt-cyc admits a super-stable matching is NP-complete, even if each

tie is of length at most 3 and occurs at the head of some agent’s list.

Huang [290] also proved a number of other results concerning weakly and

strongly stable matchings in a given 3dsmt-cyc instance I, namely (i) the

set of strongly stable matchings in I is a union of distributive lattices, (ii)

the numbers of weakly and strongly stable matchings in I can be exponen-

tial in the size of I, and (iii) the problem of counting the number of strongly

stable matchings in I is #P-complete.

Cui and Jia [157] generalised the study of 3dsm-cyc to the case in which

men, women and dogs can be multiply assigned up to some given capacity.

5.6.2 3D variants of sr

5.6.2.1 Strictly-ordered preferences over pairs

Ng and Hirschberg [465] defined the Three-Person Stable Assignment Prob-

lem (3psa) as a three-dimensional extension of sr. A 3psa instance I com-

prises a set A = {a1, . . . , an} of agents, where n = 3k for some k ≥ 1.

Define the size of I to be n, and for some S ⊆ A where |S| ≥ 2, let P2(S)

denote the set of subsets of S of size 2. Each agent ai ∈ A has a strict

preference list over P2(A\{ai}).
A matching M in I is a partition of A into k triples13. Given an agent

ai ∈ A, we define M [ai] and M(ai) as in Sec. 5.6.1.1, except that these are

now unordered sets rather than tuples. Similarly, given a triple t ⊆ A and

an agent ai ∈ t, we define t(ai) as in Sec. 5.6.1.1, except that the pair is

now unordered. A blocking triple relative to M is a triple t ⊆ A such that

each ai ∈ t prefers t(ai) to M(ai). A matching is stable if it admits no

blocking triple.

13For convenience, in this subsection we refer to a set of size 3 as a triple, even though
the elements are unordered.
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Ng and Hirschberg gave a straightforward reduction from 3gsm to 3psa,

showing that the problem of deciding whether a stable matching exists,

given an instance of the latter problem, is NP-complete.

Theorem 5.37 ([465]). The problem of deciding whether a given 3psa

instance has a stable matching is NP-complete.

As in Sec. 5.6.1.1, the preference lists in the 3psa instance as con-

structed by the reduction in Ng and Hirschberg’s proof of Theorem 5.30

are inconsistent in general. Huang [287] established the hardness of 3psa

for consistent preference lists. Here, the definition of consistency is similar

to that for the 3gsm case.

Formally, suppose that each agent ai ∈ A has a strictly-ordered pref-

erence list (linear order) ≺ai
over all agents in A\{ai}. Define the partial

order ≺′
ai

on P2(A\{ai}) as follows. Given {ap, aq} ∈ P2(A\{ai}) and

{ar, as} ∈ P2(A\{ai}), where, without loss of generality, ap ≺ai
aq and

ar ≺ai
as, define {ap, aq} ≺′

ai
{ar, as} if and only if either (i) ap ≺ai

ar
and aq = as, or (ii) ap = ar and aq ≺ai

as, or (iii) ap ≺ai
ar and aq ≺ai

as.

Then ai’s overall preference list (i.e., her linear order over P2(A\{ai})) is

consistent if it is a linear extension of ≺′
ai
.

Huang [287, 288] proved the following counterpart of Theorem 5.31 for

3psa with consistent preference lists.

Theorem 5.38 ([287,288]). Given a 3psa instance with consistent pref-

erence lists, the problem of deciding whether a stable matching exists is

NP-complete.

5.6.2.2 Preference lists over pairs with ties

As in the 3gsm case, Huang [287] also defined a notion of consistency for

preference lists over pairs that possibly involve ties in the case of 3psa.

Formally, suppose again that each agent ai ∈ A has a strictly-ordered pref-

erence list (linear order) ≺ai
over all agents in A\{ai}. Define the partial

order ≺′
ai

on P2(A\{ai}) as in the previous subsection. Then ai’s overall

preference list (i.e., her linear order ≺′′
ai

over P2(A\{ai})) is consistent if

it is a relaxed linear extension of ≺′
ai
: that is, if {ap, aq} ∈ P2(A\{ai})

and {ar, as} ∈ P2(A\{ai}), where, without loss of generality, ap ≺ai
aq

and ar ≺ai
as, then {ap, aq} ≺′

ai
{ar, as} implies that ai prefers {ap, aq} to

{ar, as} in ≺′′
ai
, and two elements are tied in ≺′′

ai
only if they are incompa-

rable in ≺′
ai
.
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As in Sec. 5.6.1.2, we can define four levels of stability (weak, strong,

super- and ultra-stability) in the presence of ties in the agents’ overall

preference lists. Again, if the agents’ overall preference lists are strictly

ordered, then weak stability coincides with stability as defined by Ng and

Hirschberg [465].

For each agent ai ∈ A, starting from ≺ai
, we can arrive at a consistent

preference list with ties for ai over P2(A\{ai}) as in Sec. 5.6.1.2. That is,

given {ap, aq} ∈ P2(A\{ai}) and {ar, as} ∈ P2(A\{ai}), where, without
loss of generality, ap ≺ai

aq and ar ≺ai
as, if

rank(ai, ap) + rank(ai, aq) < rank(ai, ar) + rank(ai, as)

then ai prefers {ap, aq} to {ar, as}, and if

rank(ai, ap) + rank(ai, aq) = rank(ai, ar) + rank(ai, as)

then ai is indifferent between {ap, aq} and {ar, as} (where rank(ai, at) is

defined relative to ≺ai
for at ∈ A). As in Sec. 5.6.1.2, we will use 3psa-pon

to denote 3psa instances constructed in this way.

Huang [287,288] established the following counterpart of Theorem 5.32.

Theorem 5.39 ([287,288]). Given an instance of 3psa-pon, each of the

problems of deciding whether there exists a matching that is strongly stable,

super-stable or ultra-stable is NP-complete.

Theorem 5.38 has already established NP-completeness for the problem of

deciding whether a weakly stable matching exists is NP-complete in a given

3psa instance with consistent and strictly-ordered preference lists.

5.6.2.3 Preferences over individual agents

Iwama et al. [337] defined another variant of 3dsr, called the Stable Room-

mates problem with Triple Rooms (sr-tr). An instance I of this problem

is as for 3psa, except that each agent ai ∈ A has a strict preference list ≺ai

over all the individual agents in A\{ai}. Let �ai
denote the reflexive clo-

sure of ≺ai
. Given {ap, aq} ∈ P2(A\{ai}), where without loss of generality

ai prefers ap to aq, let fi({ap, aq}) = ap and let si({ap, aq}) = aq.

Given a matching M in I, a triple t ⊆ A is a blocking triple of M if

t /∈ M , and for each each ai ∈ t, fi(t(ai)) �ai
fi(M(ai)) and si(t(ai)) �ai

si(M(ai)). A matching is stable if it admits no blocking triple.

Iwama et al. proved the following result regarding the complexity of

determining whether a sr-tr instance admits a stable matching.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

284 Further stable matching problems

a1 : a5 a6 a2 a3 a4

a2 : a3 a6 a4 a1 a5

a3 : a2 a6 a4 a1 a5

a4 : a2 a3 a1 a5 a6

a5 : a1 a6 a3 a4 a2

a6 : a1 a2 a3 a4 a5

Fig. 5.14 An instance of sr-tr

Theorem 5.40 ([337]). Given an instance of sr-tr, the problem of de-

ciding whether a stable matching exists is NP-complete.

In Ref. [338], a maximisation variant of sr-tr is shown to be APX-hard.

It is tempting to believe that the problem of finding a stable matching

in the context of sr-tr is equivalent to the problem of finding a weakly

stable matching, given an instance of 3psa-pon. However there is a subtle

difference between the two problems, which can be illustrated by the sr-tr

instance I shown in Fig. 5.14. The preference lists over individual agents

indicate that, in the corresponding 3psa-pon instance I ′, a6 prefers {a2, a3}
to {a1, a5}, for example. With this observation in mind, it can be verified

that M = {{a1, a5, a6}, {a2, a3, a4}} is stable in I but not weakly stable in

I ′, because {a2, a3, a6} is a blocking triple of M in I ′.

5.6.2.4 Three-Way Kidney Transplant

Huang [290] considered a variant of 3dsr in which the agents correspond to

patient–donor pairs14 in a kidney exchange setting (see Sec. 1.4.6), and the

triples (that either belong to a matching or constitute a blocking triple) are

ordered. Moreover, a triple (ai0 , ai1 , ai2) represents the donation of a kidney

from the donor in pair air+1
to the patient in pair air (where 0 ≤ r ≤ 2

and addition is taken modulo 3).

Formally, an instance I of the Three-Way Kidney Transplant problem

(3wkt) is the same as for sr-tr as defined in the previous subsection,

except that triples in a matching and in a blocking triple are ordered. Let

A be the set of agents in I and assume that n = |A| = 3k for some k ≥ 1. A

matching M in I is a set of k triples such that each agent appears in exactly

one triple in M . Given a triple t = (ai0 , ai1 , ai2), we define t(air ) = air+1

for each r (where 0 ≤ r ≤ 2), and addition is taken modulo 3), and we refer

to t(air ) as the successor of air . If t ∈ M , we let M(air) denote t(air ).

14Note that in this subsection, usage of the term pair signifies a single agent, representing
a patient–donor pair.
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As already discussed, in matching M the donor in pair M(air ) donates

a kidney to the patient in pair air . The preferences of air over individual

agents correspond to the patient in air ’s compatibility with the donors in

the other pairs. For example, following Huang [290], let I be the instance

of 3wkt involving three agents a0, a1, a2, where ai prefers ai−1 to ai+1

(0 ≤ i ≤ 2 and arithmetic is taken modulo 3). Then, for example, the

patient in a0 prefers to receive a kidney from the donor in a2 rather than

the donor in pair a1.

The concept of the degree of a blocking triple as defined in Sec. 5.6.1.2

can also be applied to the 3wkt context, and by using it we can also obtain

the notions of a weakly stable, strongly stable and super-stable matching in

a 3wkt instance, as previously defined in Sec. 5.6.1.2.

A curious phenomenon that arises as a result of the 3wkt problem

definition is that it is possible for a matching M in a given instance to be

blocked by a triple of agents who already belong to a triple in M (albeit

in a different order). For example in the 3wkt instance I defined above,

the matching M = {(a0, a1, a2)} is blocked by the triple (a0, a2, a1) with

respect to weak stability, strong stability or super-stability.

Huang proved the following results concerning the algorithmic complex-

ity of computing stable matchings with respect to the three aforementioned

stability criteria.

Theorem 5.41 ([290]). Each of the problems of deciding whether a given

3wkt instance admits a weakly stable, strongly stable or super-stable match-

ing is NP-complete.

Huang [290] also proved that, given a 3wkt instance I, the numbers of

weakly and strongly stable matchings in I can be exponential in the size of

I, and the problem of counting the number of strongly stable matchings in

I is #P-complete.

Biró and McDermid [94] defined the b-way stable l-way exchange problem

(b ≥ 2 and l ≥ 2) as a generalisation of 3wkt in which a given instance

is defined in the same way as for 3wkt, but now a matching can involve

tuples of length r, where 2 ≤ r ≤ l, and a blocking tuple can be of length

s, where 2 ≤ s ≤ b. In such a problem instance, Biró and McDermid [94]

defined a matching to be strongly stable (corresponding to super-stability

as defined in Sec. 5.6.1.2) if there is no blocking tuple t (of length at most

b) in which at least one agent ai in t prefers t(ai) to M(ai), whilst no agent

aj in t prefers M(aj) to t(aj). A matching can also be defined to be weakly
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stable (referred to as stable in Ref. [94]) if there is no blocking tuple t (of

length at most b) in which each agent ai in t prefers t(ai) to M(ai).

If l = ∞, the problem of finding a weakly stable matching is solvable in

linear time using the Top Trading Cycles (TTC) algorithm [527]. Roth and

Postlewaite [508] showed that in fact the TTC algorithm (see Sec. 6.2.1.2

and Sec. 6.2.1.4) yields a strongly stable matching.

If l = 2 and b = 2, we obtain sr (see Chap. 4). If l = 2 and b > 2, we

obtain the Cycle Stable Roommates problem (see Sec. 5.8.2). In this setting

the problem of determining whether a weakly stable matching exists is NP-

complete in each of the cases that b = ∞ or b = 3 (see Sec. 5.8.2 for more

details).

If l = 3 and b = 3, we return to 3wkt. As observed by Biró and McDer-

mid, in this context, Theorem 5.34 implies that the problem of determining

whether a weakly stable matching exists is NP-complete even for tripartite

directed graphs (where the list of agents is partitioned into men, women

and dogs). Also Theorem 5.35 implies that the same is true for strong

stability. Both of these observations implicitly assume that we extend the

problem definition to allow preference lists to be incomplete. Biró and Mc-

Dermid noted that the complexity of determining whether a weakly stable

or strongly stable matching exists is open in the case that l = 3 and b = 2.

5.6.2.5 Geometric 3dsr

Arkin et al. [50] considered a geometric variant of 3psa, which could also be

described as a three-dimensional variant of geometric sr (see Sec. 4.7.4).

An instance I of geometric 3dsr comprises a set A of agents, where n =

|A| = 3k for some k ≥ 1, and where the agents in A correspond to points

in R
d, for some given d ≥ 1. It is assumed that all agents are mutually

acceptable, and we also define the notationM(ai), t(ai) and P2(S), and the

terms triple and matching, as in Sec. 5.6.2.1. We remark that the “three-

dimensional” aspect of geometric 3dsr refers to the size of the triples,

rather than to the particular value of d.

Given an agent ai ∈ A and two sets {ap, aq} and {ar, as} in P2(A\{ai}),
we say that ai prefers {ap, aq} and {ar, as} if

||ai − ap||d + ||ai − aq||d < ||ai − ar||d + ||ai − as||d
and we say that ai is indifferent between the two pairs if equality holds. A

matching M is weakly stable if there is no triple of agents t such that ai
prefers t(ai) to M(ai) for each ai ∈ t. Arkin et al. [50] gave an example

geometric 3dsr instance with 12 agents that does not admit a weakly
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stable matching. They also remarked that, in general, the complexity of

the problem of deciding whether a weakly stable matching exists, given a

geometric 3dsr instance, is open. Arkin et al. [50] also generalised the

concept of an α-stable matching (see Sec. 2.10.10) to the geometric 3dsr

case, presenting some associated algorithmic results.

5.7 Exchange-stable matching problems

In this section we consider criteria for matchings that are based on the

absence of pairs or coalitions of agents who can swap partners so as to

improve relative to their existing assignees. We study exchange-stability

in Section 5.7.1, which corresponds to the absence of a pair of agents who

envy each other’s partners. Section 5.7.2 deals with the case where the

coalitions of agents who can swap partners so as to improve may be of size

greater than two. Finally in Section 5.7.3 we outline results for the case that

the matching must be stable (in the classical sense) in addition to being

resistant against coalitions of agents who envy one another’s partners.

5.7.1 Exchange-stability as a solution concept

Alcalde [35] defined an alternative notion of stability, so-called exchange-

stability, in the context of an instance I of sr. He defined a matching M

in I to be exchange-stable if M admits no exchange-blocking pair, which is

a pair of agents {ai, aj}, each of whom prefers the other’s partner in M

to their own. That is, ai prefers M(aj) to M(ai), and aj prefers M(ai) to

M(aj), so ai and aj would prefer to swap partners than remain with their

existing ones. As in the case of classical stability, the preferences of M(ai)

and M(aj) are not considered as far as the potential swap is concerned.

Alcalde showed that exchange-stability and classical stability are inde-

pendent notions, i.e., neither criterion implies the other. Indeed, he con-

structed an sr instance I1, shown in Fig. 5.15, that admits a stable matching

(namely {{a1, a2}, {a3, a4}} but no exchange-stable matching, and an sr

instance I2, shown in Fig. 5.16, that admits an exchange-stable matching

(namely {{a1, a3}, {a2, a4}}) but no stable matching.

Alcalde argued that, in situations when participants have “property

rights”, exchange-stability could be more appropriate than classical sta-

bility. For example, in the context of assigning 2n students to n two-bed

rooms, an individual’s property would be the bed that she occupies. A
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a1 : a2 a3 a4
a2 : a4 a1 a3
a3 : a1 a4 a2
a4 : a3 a2 a1

Fig. 5.15 Instance I1 of sr due to
Alcalde [35]

a1 : a2 a3 a4
a2 : a3 a1 a4
a3 : a1 a2 a4
a4 : a1 a2 a3

Fig. 5.16 Instance I2 of sr due to
Alcalde [35]

Men’s preferences Women’s preferences
m1 : w1 w2 w1 : m2 m1

m2 : w2 w1 w2 : m1 m2

Fig. 5.17 An instance of sm with no exchange-stable matching due to Cechlárová [118]

blocking pair {ai, aj} in the classical sense could not lead to any disruption

of the matching in practice, since there is no extra room for ai and aj to

occupy, and moreover each of the partners of ai and aj in the matching

would exercise their property rights by refusing to give up their bed in or-

der to make a room available. However an exchange-blocking pair {ai, aj}
would in practice lead ai and aj to simply swap beds.

The problem of deciding whether an sr instance admits an exchange-

stable matching was shown to be NP-complete by Cechlárová [118], how-

ever in the problem instances she constructed, the preference lists were

both incomplete and inconsistent (i.e., there were agents ai, aj such that

ai found aj acceptable but not vice versa). Later, Cechlárová and Manlove

[130] showed that NP-completeness holds for instances of sr (with complete

preference lists).

Theorem 5.42 ([130]). The problem of determining whether a given sr

instance admits an exchange-stable matching is NP-complete.

The concept of exchange-stability may be applied to an instance I of

sm: a matching M in I is exchange-stable if there are no two agents of the

same sex, both assigned in M , each of whom prefers the other’s partner to

his/her own partner in M . Cechlárová [118] gave an example sm instance,

shown in Fig. 5.17, that admits no exchange-stable matching. Cechlárová

and Manlove [130] proved the following result.

Theorem 5.43 ([130]). The problem of determining whether a given sm

instance admits an exchange-stable matching is NP-complete.
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Ref. [101] considers exchange-stable matchings in a matching market where

agents express preferences via utility functions rather than via traditional

ordinal preferences.

5.7.2 Exchange-blocking coalitions

In the sm context, it is also possible to consider a weaker form of exchange-

stability, where exchange-blocking pairs are only permitted to contain two

men (or analogously, two women). A matching M in an sm instance I

is defined to be man-exchange-stable if there is no exchange-blocking pair

involving two men (a woman-exchange-stable matching may be defined sim-

ilarly).

A group of agents who wish to swap partners so as to improve

their allocation may involve more than just a pair of agents, of course.

More generally, an exchange-blocking coalition is a sequence of agents

〈a0, a1, . . . , ak−1〉, for some k ≥ 2, such that, for each i (0 ≤ i ≤ k − 1),

ai prefers M(ai+1) to M(ai), where addition is taken modulo k. An

exchange-blocking coalition involving only men (respectively women) is a

man-exchange-blocking coalition (woman-exchange-blocking coalition). A

matching is coalition-exchange-stable if it admits no exchange-blocking

coalition. The definitions of man-coalition-exchange-stable and woman-

coalition-exchange-stable are analogous. Indeed, a matching is man-

coalition-exchange stable if and only if it is Pareto optimal for the men.

The notion of exchange-stability for a given matching M in an smi

instance I is well-defined if we require that M is a perfect matching in

the underlying graph of I; if a perfect matching does not exist then we

simply say that I admits no exchange-stable matching. Similar remarks

apply to the other variants of exchange-stability introduced in the preceding

paragraph.

Cechlárová and Manlove [130] established the following results regarding

exchange-blocking coalitions in smi instances.

Theorem 5.44 ([130]). Let I be an instance of smi, where n is the size

of I and m is the number of acceptable pairs in I. Then

(i) a matching can be tested for coalition-exchange-stability in O(m) time,

and the same bound holds for man/woman-coalition-exchange-stability;

(ii) we can find a man-coalition-exchange-stable matching in I or report

that none exists in O(
√
nm) time;
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Men’s preferences Women’s preferences
m1 : w1 w4 w2 w3 w1 : m4 m1 m2 m3

m2 : w3 w2 w4 w1 w2 : m1 m2 m4 m3

m3 : w2 w3 w4 w1 w3 : m3 m2 m1 m4

m4 : w3 w2 w4 w1 w4 : m2 m4 m3 m1

Fig. 5.18 An instance of sm with no stable matching that is man-exchange-stable due
to Irving [316].

(iii) if I is an instance of sm, then I admits a man-coalition-exchange-stable

matching, and such a matching can be found in O(n2) time;

(iv) if preference lists in I are allowed to be inconsistent, the problem of

deciding whether a man-exchange-stable matching in I exists is NP-

complete.

With respect to the above theorem, Part (i) may be established with the aid

of the envy graph. This digraph DM is defined relative to a given matching

M , and contains a vertex for each agent who is assigned in M , and an

arc from agent ai to agent aj if ai prefers M(aj) to M(ai). Clearly M

is coalition-exchange-stable if and only if DM is acyclic, and M is man-

coalition-exchange-stable (respectively woman-coalition-exchange-stable) if

and only if DM admits no cycle involving only men (women). Part (ii)

follows by using the algorithm for constructing a maximum Pareto optimal

matching in the ha instance obtained from I by ignoring the women’s pref-

erences. Also the algorithm for Part (iii) is the Random Serial Dictatorship

Mechanism. See Chapter 6 for more details about both of these algorithms.

Cechlárová and Manlove reported that the complexity of the problem of

finding a coalition-exchange-stable matching or reporting that none exists,

for a given sm instance, is open, though conjecture that the problem is

NP-hard.

5.7.3 Stable matchings that are exchange-stable

Cechlárová and Manlove [130], Irving [316] and McDermid et al. [440] also

considered matchings that are both stable and coalition-exchange-stable

(implicitly the definition of an exchange-blocking coalition is extended in

this case so that it involves only agents who are assigned relative to the

matching in question). It turns out that an sm instance need not admit

a stable matching that is even man-exchange-stable. Consider the sm in-

stance I, due to Irving [316], illustrated in Fig. 5.18. There are two stable
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matchings in I, namely the man-optimal and woman optimal stable match-

ings Ma and Mz respectively, where

Ma = {(m1, w1), (m2, w2), (m3, w3), (m4, w4)}
Mz = {(m1, w2), (m2, w4), (m3, w3), (m4, w1)}

Ma admits the man-exchange-blocking pair {m2,m3}, whilst Mz admits

the man-exchange-blocking pairs {m1,m2} and {m1,m4}.
Cechlárová and Manlove [130] observed that if a stable matching

M is to be man-coalition-exchange-stable then it must be the man-

optimal stable matching. For, if M is not the man-optimal stable

matching then there is some stable matching M ′ and rotation ρ =

(m0, w0), (m1, w1), . . . , (mr−1, wr−1) exposed in M ′ such that M = M ′/ρ.

But then 〈mr−1, . . . ,m1,m0〉 is a man-exchange-blocking coalition of M , a

contradiction. A similar observation holds for woman-coalition-exchange-

stability, and hence a necessary condition for the existence of a stable

matching M that is coalition-exchange-stable is that M is the unique stable

matching. We have already seen that the envy graph can be used to test

M for coalition-exchange-stability.

In the sri case, it turns out that there is also a strong necessary con-

dition for the existence of a stable matching that is coalition-exchange-

stable. Consider an execution of Irving’s algorithm [306] as applied to a

given solvable sri instance I. Suppose that Phase 2 of the algorithm is

executed, terminating with stable matching M . This phase involves the

elimination of one or more rotations. Let ρ be the final rotation to be

eliminated. Then ρ = (x0, y0), (x1, y1), . . . , (xr−1, yr−1) for some r ≥ 2.

Hence 〈xr−1, . . . , x1, x0〉 is an exchange-blocking coalition of M . It fol-

lows that a necessary condition for I to admit a stable matching that is

coalition-exchange-stable is that Phase 1 of Irving’s algorithm terminates

with a stable matching M (which is therefore unique). To check that M is

coalition-exchange-stable, the envy graph DM for M (whose definition is

analogous to that given above for the smi case) may again be used.

The following result summarises the discussion in the preceding two

paragraphs.

Theorem 5.45 ([130]). Let I be an instance of sri. We can find a sta-

ble matching that is coalition-exchange-stable or report that none exists in

O(m) time, where m is the number of acceptable pairs of agents. The same

is true if I is an instance of smi, and also if the stable matching is required

to be man/woman-coalition-exchange-stable.
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Irving [316] considered the case that stable matchings are required to be

man-exchange-stable (i.e., there must be no man-exchange-blocking coali-

tions of size 2). This problem was motivated by the fact that, in a previous

run of SFAS (the Scottish medical matching scheme for allocating junior

doctors to hospital posts), two participants discovered that, were they to

exchange their allocated hospitals, they would both be better off [310]. Of

course, the stability of the matching ensured that the hospitals would not

agree to the switch, since they would each be worse off, were the residents

to swap. However this incident nevertheless led to some feelings of dis-

satisfaction among the participants involved, and raised the question as

to whether it would be possible to find an efficient algorithm to construct

a stable matching that admits no man-exchange-blocking pair, or report

that no such matching exists. Irving showed that this is unlikely in gen-

eral, though there is hope if the men’s preference lists are short. Irving

also showed that the problem is hard in general if the stable matching is

required to be exchange-stable.

Theorem 5.46 ([316]).

(i) The problem of deciding whether a given sm instance admits a

stable matching that is man-exchange-stable is NP-complete. NP-

completeness also holds if the stable matching is instead required to

be exchange-stable.

(ii) Given an instance of smi of size n in which the men’s preference lists

are of length at most 3, there is an O(n) algorithm that finds a stable

matching that is man-exchange-stable, or reports that no such matching

exists.

There is a straightforward reduction from an sm instance I to an sr instance

J such that the stable matchings in I are in 1–1 correspondence with the

stable matchings in J [261, Lemma 4.1.1]. The same reduction yields a

similar correspondence for exchange-stable matchings [130, Lemma 3.1].

Putting these two observations together with Theorem 5.46, we obtain the

following corollary.

Corollary 5.47 ([316]). The problem of deciding whether a given sr in-

stance admits a stable matching that is exchange-stable is NP-complete.

Irving conjectured that the problem of deciding whether an smi instance

admits a stable matching that is man-exchange-stable is NP-complete, even
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if the men’s lists are of length at most 4. This was shown to be true

by McDermid et al., using an adaptation of Irving’s reduction from Ref.

[316], with NP-completeness holding even when the women’s lists are also

of bounded length.

Theorem 5.48 ([440]). Let k and k′ be two integers where k ≥ 4 and

k′ ≥ 5. Let I be an smi instance where the men’s lists are of length at

most k and the women’s lists are of length at most k′. Then the problem of

deciding whether I admits a stable matching that is man-exchange-stable is

NP-complete.

McDermid et al. remarked that if the preference lists in their constructed

smi instances are allowed to be inconsistent, then the lower bound for k′ in

the context of Theorem 5.48 improves to 3.

For smi instances that do not admit a stable matching that is man-

exchange-stable, a natural alternative is to seek a stable matching that

has the smallest number of man-exchange-blocking pairs. Unfortunately,

however, McDermid et al. proved that this problem is also NP-hard even

in a highly restricted setting.

Theorem 5.49 ([440]). Let k and k′ be two (fixed) integers where k ≥ 3

and k′ ≥ 3. Let I be an smi instance where the men’s lists are of length at

most k and the women’s lists are of length at most k′. Then the problem

of deciding whether I admits a stable matching that admits at most K

man-exchange-blocking pairs, for some (non-fixed) integer K ≥ 0, is NP-

complete.

Again, McDermid et al. remarked that if the preference lists in their con-

structed smi instances are allowed to be inconsistent, then the lower bound

for k′ in the context of Theorem 5.49 improves to 2.

5.8 Two additional stable matching problems

5.8.1 Bistable matching problems

Given an instance I of sm or sr, let Î denote the instance obtained by

reversing each agent’s preference list in I. A matching in I is bistable if

it is stable in both I and Î. The notion of bistability was introduced by

Weems in sm and sr [585]. The concept is interesting from a theoretical

standpoint, but the practical motivation for the definition is less clear!
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Men’s preferences Women’s preferences
m1 : w1 w2 w1 : m1 m2

m2 : w2 w1 w2 : m2 m1

Fig. 5.19 An instance of sm with no bistable matching

We firstly remark that an sm instance need not admit a bistable match-

ing, as illustrated by the instance in Fig. 5.19. On the other hand, Weems

[585] observed that the sm instance of size 4 shown in Fig. 2.1 satisfies the

property that each of the 10 stable matchings is bistable. This follows from

the fact that for each i (1 ≤ i ≤ 4), the reverse of mi’s preference list is

precisely wi’s preference list (with w replaced by m for each element of mi’s

preference list).

Weems [585] described a simple extension of the MEGS algorithm for

finding a man-optimal bistable matching in a given sm instance I. Since he

did not present the algorithm explicitly in pseudocode form, we give such

a description in the form of Algorithm Bistable shown in Algorithm 5.2. In

what follows we assume that U and W are the sets of men and women in I

respectively, and we define a reverse blocking pair of a matching M in I to

be a blocking pair of M in Î. Clearly M is bistable if and only if it admits

no blocking pair and no reverse blocking pair in I.

Algorithm Bistable deletes entries from the preference lists as per the

MEGS algorithm for sm [261, Sec. 1.2.4]: if a man mi proposes to a woman

wj then, as usual, we delete each pair (mk, wj) such that wj prefers mi to

mk (recall that delete the pair (mk, wj) means deleting mk from wj ’s list

and vice versa). The new addition is that, for each such man mk, we now

delete each pair (mk, wl) such that mk prefers wl to wj . The reasoning is

that such a pair (mk, wl) could never belong to a bistable matching M ′.

For, suppose otherwise. In any bistable matching, wj must obtain a partner

who is no worse than mi. Thus (mk, wj) is a reverse blocking pair of M ′.

It follows that the algorithm never deletes a bistable pair (i.e., a pair

that belongs to some bistable matching), and hence the algorithm correctly

reports that no bistable matching exists if it reaches line 15. On the other

hand, if the algorithm returns some matching M then it follows from the

correctness of the MEGS algorithm that M admits no blocking pair. More-

over M admits no reverse blocking pair (mi, wj), for if wj prefers M(wj)

to mi, then the pair (mi, wj) is deleted along with each pair (mi, wk) such

that mi prefers wk to wj , and hence mi prefers wj to M(mi).

We summarise this discussion with the following theorem.
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Algorithm 5.2 Algorithm Bistable [585]

Require: sm instnance I
Ensure: return the man-optimal bistable matching M in I , or “no bistable

matching exists”
1: M := ∅;
2: while some man mi ∈ U is unassigned in M do

3: wj := most-preferred woman on mi’s list; {mi proposes to wj}
4: if wj is assigned in M then

5: M := M\{(M(wj), wj)};
6: end if

7: M := M ∪ {(mi, wj)};
8: for each successor mk of mi on wj ’s list do

9: delete the pair (mk, wj);
10: for each predecessor wl of wj on mk’s list do

11: delete the pair (mk, wl);
12: end for

13: end for

14: if some preference list is empty then

15: return “no bistable matching exists”;
16: end if

17: end while

18: return M ;

Theorem 5.50 ([585]). Given an sm instance I of size n, Algorithm

Bistable returns the unique man-optimal bistable matching in I, or else

reports that no bistable matching in I exists. The complexity of Algorithm

Bistable is O(n2).

Weems [585] also extended the LP-based formulation of sm as given by

Vande Vate (see Sec. 2.4) to the bistability case. Further, he showed that

the set of bistable matchings in a given sm instance I forms a distributive

lattice. Finally, he obtained a characterisation of bistable matchings based

on closed subsets of the bistable permutation order : here, each bistable

permutation is the composition of a sequence of rotations.

Sethuraman and Teo [525] also considered bistability in the context

of sm. They gave a simple equivalent definition of bistability, namely, a

matching M is bistable if and only if, for each pair (mi, wj) ∈ (U ×W )\M ,

exactly one of mi and wj prefers the other to their partner in M . They gave

an LP-based characterisation of bistable matchings in a given sm instance I,

proving that its polytope is the convex hull of the set of bistable matchings

in I. The authors also proved a direct analogue of Theorem 2.9, concerning

generalised median stable matchings, for the case of bistable matchings.
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We now turn to bistable matchings in the case of sr. Weems [584] de-

scribed a characterisation of bistable matchings in a given sr instance I in

terms of sat clauses — these clauses essentially extend the 2-sat charac-

terisation of sr [261, pp.194–195] that encodes the rotation poset in I for

classical stability (see Sec. 4.2.4). Further clauses are present that encode

so-called backward rotations, which must also be considered in addition to

classical (forward) rotations in order to enforce bistability. The difficulty is

that some clauses in Weems’ characterisation ended up being of length 3,

which led him to speculate as to whether the problem of finding a bistable

matching in I is NP-hard.

Sethuraman and Teo [525] showed that this is in fact not the case.

They gave an LP-based characterisation of bistable matchings in a given

sr instance I, extending their earlier LP formulation for stable matchings

in I [565] (see Sec. 4.2.6). They also proved a direct analogue of Theorem

4.16 (concerning generalised median stable matchings in sr) for bistable

matchings.15

5.8.2 The Cycle Stable Roommates problem

Irving [312] considered a variant of sri in which we seek a matching M that

admits no blocking cycle. This is a coalition of agents 〈a0, a1, . . . , ak−1〉, for
some k ≥ 2, such that, for each i (0 ≤ i ≤ k− 1), either (i) ai is unassigned

in M and finds ai+1 acceptable, or (ii) ai prefers ai+1 to M(ai), where

addition is taken modulo k. He defined a matching to be cycle stable if it

admits no blocking cycle. Since a blocking pair corresponds to a blocking

cycle of length 2, a cycle stable matching is stable in the classical sense.

The motivation for considering this problem comes from kidney ex-

change. Recall from Sec. 1.4.6 that the problem of constructing kidney

exchanges between patients with willing but incompatible donors can be

modelled via sri. In practice, pairwise kidney exchanges (involving two

patient–donor pairs) are the most likely type of exchange to proceed, how-

ever longer cycles (in which more than two patient–donor pairs exchange

kidneys) are possible. In general, cycles need to be as short as possible as

all operations must take place simultaneously.

Hence one could ask, for example, whether there is a stable matching

in a given sri instance that admits no short blocking cycle, say of length

15In fact, Theorems 3.2 and 3.3 in Ref. [525], which are intended to establish the analogue
of Theorem 4.16 for bistable matchings, are erroneously stated in terms of stability rather
than bistability. However the results do indeed hold in the case of bistability [524].
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a1 : a3 a5 a2 a6 a4 a1 : a3 a2 a5 a4 a6

a2 : a1 a4 a6 a3 a5 a2 : a1 a4 a5 a6 a3

a3 : a6 a2 a5 a1 a4 a3 : a5 a4 a2 a6 a1

a4 : a2 a6 a5 a3 a1 a4 : a3 a2 a6 a1 a5

a5 : a6 a3 a1 a4 a2 a5 : a1 a6 a4 a3 a2

a6 : a1 a4 a3 a2 a5 a6 : a5 a4 a2 a1 a3

Fig. 5.20 Instances I1 and I2 of sr due to Irving [312].

at most 3. This is equivalent to asking for a matching, which corresponds

to a set of pairwise exchanges, that admits no blocking cycle of length at

most 3. The fact that a solution itself can contain only pairs and not 3-

cycles, and yet must be resistant to triples of agents who could improve

by swapping kidneys among themselves, could be seen as a shortcoming of

the model insofar as the kidney exchange application is concerned. (Were

the model to allow triples in a solution, we would be in the realm of a

coalition formation game — see Sec. 4.8.8 for more details.) Nevertheless

it is arguable that the problem is interesting in its own right.

Example 5.51 ([312]). Consider the sr instances I1 and I2, shown in

Fig. 5.20, due to Irving [312]. Matching M1 = {{a1, a2}, {a3, a5}, {a4, a6}}
is stable (in the classical sense) but not cycle stable because of the blocking

cycle 〈a1, a5, a6〉. However matching M2 = {{a1, a5}, {a2, a4}, {a3, a6}}
is cycle stable in I1. Instance I2 admits a stable matching M3 =

{a1, a2}, {a3, a4}, {a5, a6}} which is the unique stable matching in I2. How-

ever M3 admits the blocking cycle 〈a1, a3, a5〉, and hence I2 has no cycle

stable matching.

Clearly a matching M in a given sri instance may be tested for cycle

stability with the aid of the following digraph D′
M (a modification of the

envy graph defined in Sec. 5.7.2). The vertex set of D′
M is the set of agents

in I, and an arc (ai, aj) is in D′
M if either (i) ai is unassigned in M and

finds aj acceptable, or (ii) ai prefers aj to M(ai). It follows easily that M

is cycle stable if and only if D′
M is acyclic.

The main result of Irving’s paper [312] is the following.

Theorem 5.52 ([312]). The problem of deciding whether a given sr in-

stance admits a cycle stable matching is NP-complete. The result also holds

even if we insist that the length of a blocking cycle must be at most 3.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

298 Further stable matching problems

Thus Irving’s NP-completeness result holds for the restricted version of

the problem that is motivated by the kidney exchange application. An

obvious open problem is whether NP-completeness still holds for sri with

bounded preference lists, either for the case that blocking cycles may be of

unbounded length, or where their length is again bounded, say by 3.

5.9 Conclusions and open problems

In this chapter we have considered a diverse range of matching problems

involving various forms of stability criteria. Many algorithmic results are

known and have been described here, but some intriguing open problems

remain. Here we list a selection of these.

(1) As discussed in Sec. 5.2.2, the problem of deciding whether an instance

of hr-lq-1 admits a stable matching is NP-complete. The result holds

even if each hospital’s upper and lower quota is equal to 3, but the

complexity of the decision problem is open if each lower quota is at

most 2.

(2) To cope with the possible non-existence of a stable matching in a given

hrc instance in I, we might try to find a matching that is “almost

stable” in a particular sense. That is, given the widespread practical

applications of hrc, there is strong motivation for considering the prob-

lem of finding a matching in I with the minimum number of blocking

pairs. Theorem 5.14 implies that this problem is NP-hard in general,

though its approximability is open.

(3) In Sec. 5.4.3 we described a model for many–many bipartite stable

matching, namely wf-1, where the size of the instance is polynomially-

bounded in the number of agents. In an instance of wf-1, each worker

and firm has a strictly-ordered preference list over individual agents

from the other set. Variants of wf-1 where these preference lists can

involve ties (or other forms of indifference) can also be considered. It is

possible to formulate analogues of weak stability, strong stability and

super-stability in wf-1 with ties (see Sec. 1.3.5 for definitions of these

criteria in the hr case). Clearly negative results for hrt also hold for

wf-1 with ties, but it remains open to extend exact and approximation

algorithms for hrt to the many–many case. A result along these lines

has already been obtained in the case of strong stability (see Sec. 3.5.2).

(4) Sec. 5.5.2.2 described an efficient algorithm for finding a student-

optimal stable matching in a given instance of spa-s. As mentioned
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in Sec. 5.5.2.5, it remains open to consider, from an algorithmic point

of view, variants of spa-s with ties, and also the case where project

lower bounds may be present and no project may be closed.

(5) Perhaps the most intriguing open problem in this list, at least in view

of the number of authors that have mentioned it, concerns 3dsm-cyc

(defined in Sec. 5.6.1.4), and in particular the question of whether every

instance I of this problem admits a weakly stable matching. Moreover,

it is open as to whether there is a polynomial-time algorithm for finding

a weakly stable matching in I (or reporting that none exists, if it turns

out that I need not admit such a matching).
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Chapter 6

Pareto optimal matchings

6.1 Introduction

In Sec. 1.5.3 we defined the notion of a Pareto optimal matching in a given

instance of ha. The concept can equally be defined in instances of hat, cha,

smi, hr and sr. In this chapter we will describe structural and algorithmic

results for Pareto optimal matchings in instances of all of these problems.

We have already seen (via Fig. 1.2) that, in an ha instance, a Pareto

optimal matching could be half the size of a maximum cardinality match-

ing (clearly the instance in Fig. 1.2 can be replicated as many times as

necessary to produce an arbitrarily large ha instance with this property).

This motivates the problem of finding a Pareto optimal matching of maxi-

mum size, which we refer to as a maximum Pareto optimal matching. This

problem will form a major focus of this chapter in particular.

Pareto optimal matchings (and even maximum Pareto optimal match-

ings) can have a relatively poor profile. The following example illustrates

this.

Example 6.1. Consider the ha instance I illustrated by Fig. 6.1, where

n, the number of applicants, is some integer ≥ 2. Consider the following

a1 : h1 hn

a2 : h1 h2

a3 : h2 h1 h3

. . .
an : hn−1 h1 . . . hn−2 hn

Fig. 6.1 An instance of ha with a “bad” Pareto optimal matching

303
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maximum Pareto optimal matchings in I:

M1 = {(ai, hi) : 1 ≤ i ≤ n}
M2 = {(a1, hn)} ∪ {(ai, hi−1) : 2 ≤ i ≤ n}

Then applicant ai has her ith-choice house in M1 (1 ≤ i ≤ n), whilst

p(M2) = 〈n− 1, 1〉.

Despite the possible shortcomings of Pareto optimal matchings in terms

of size, profile and indeed weight, they are regarded by economists as a

fundamental solution concept and a minimum requirement for any “reason-

able” solution to a cooperative game. Moreover, mechanisms for producing

Pareto optimal matchings are often strategy-proof, whilst the same need

not be true of mechanisms that produce matchings that are optimal with

respect to size, weight or profile.

Pareto optimal matchings can be constructed using a classical algo-

rithm called the Serial Dictatorship Mechanism (see e.g., Ref. [5]), which we

subsequently refer to as Algorithm SDM. This is a straightforward greedy

algorithm that takes each applicant in turn and assigns her to the most-

preferred available house on her preference list. The order in which the

applicants are processed will, in general, affect the outcome. If a lottery

is used in order to determine the applicant ordering, then we obtain the

Random Serial Dictatorship Mechanism [5]. Alternatively, the applicants

might be prioritised in some objective way. Roth and Sotomayor [514, Ex-

ample 4.3] remark that when the United States Naval Academy matches

graduating students to their first posts as Naval Officers using an approach

based on Algorithm SDM, students are considered in non-decreasing order

of graduation results.

Clearly Algorithm SDM may be implemented to execute in O(m) time,

where m is the number of acceptable applicant–house pairs. In addition,

the mechanism is group strategy-proof (i.e., no coalition of applicants can

jointly misrepresent their true preferences in order for at least one mem-

ber of the coalition to improve, whilst no other coalition member is worse

off; see e.g., Ref. [553]). However despite these desirable properties, an

arbitrary execution of Algorithm SDM need not produce a Pareto optimal

matching that is optimal with respect to either size, weight or profile. For

example, with respect to Example 6.1, Algorithm SDM produces M1 by

considering the agents in increasing indicial order, whilst M2 is produced

if the algorithm starts with a2. It is thus of interest to consider algorithms

for computing Pareto optimal matchings with additional properties.
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In this chapter we study Pareto optimal matchings in a range of problem

domains, including ha, hat, cha, hr and sr. We present structural char-

acterisations of Pareto optimal matchings, leading to efficient algorithms for

checking a matching for Pareto optimality. We also focus on the algorith-

mic complexity of problems associated with computing particular types of

Pareto optimal matchings, including maximum Pareto optimal matchings.

We further consider matchings in the core (a stronger notion compared to

Pareto optimality) for associated housing markets.

The remaining sections are organised as follows: Sec. 6.2 concerns the

House Allocation problem, with the strict preference case (ha) considered

in Sec. 6.2.1 and preference lists with ties (hat) dealt with in Sec. 6.2.2. In

each of these subsections of Sec. 6.2 we also discuss matchings in the core of

associated housing market problems with and without ties. Subsequently,

results for Pareto optimal matchings are described in instances of cha, the

many–one extension of ha, in Sec. 6.3; in hr, the variant of cha in which

both sets of agents have preference lists, in Sec. 6.4; and in sri, the non-

bipartite generalisation of ha, in Sec. 6.5. Finally in Sec. 6.6 we present

some concluding remarks and open problems.

6.2 House Allocation problem

6.2.1 Strictly-ordered preferences

6.2.1.1 Testing for Pareto optimality

Abraham et al. [18] gave a characterisation of Pareto optimal matchings

in a given ha instance I that leads to an O(m) algorithm for testing for

Pareto optimality, where m is the number of acceptable applicant–house

pairs. To describe this algorithm, we require some initial definitions. In

what follows, we recall definitions from Sec. 1.5.2.

We say that a matching M ∈ M is trade-in-free if there is no applicant–

house pair (ai, hj) such that ai is assigned in M , hj is unassigned in M ,

and ai prefers hj to M(ai). Also M is cyclic coalition-free if M admits no

cyclic coalition, which is a sequence of applicants C = 〈ai0 , ai1 , . . . , air−1
〉,

for some r ≥ 2, all assigned in M , such that aij prefers M(aij+1
) to M(aij )

(0 ≤ j ≤ r − 1) (all subscripts are taken modulo r when reasoning about

cyclic coalitions). The matching

M ′ = (M\{(aij ,M(aij )) : 0 ≤ j ≤ r−1})∪{(aij ,M(aij+1
)) : 0 ≤ j ≤ r−1}

is defined to be the matching obtained from M by satisfying C.
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The following proposition gives necessary and sufficient conditions for a

matching to be Pareto optimal.

Proposition 6.2 ([18]). Let M be a matching in a given instance of ha.

Then M is Pareto optimal if and only if M is maximal, trade-in-free and

cyclic coalition-free.

For a given matching M , we can trivially check whether M satisfies the

maximality and trade-in-free properties in O(m) time. To check for the

absence of cyclic coalitions, we construct the envy graph D′
M of M . This is

similar to the envy graph DM as defined in Sec. 5.7.2, but with one subtle

distinction, namely the vertex set of D′
M comprises only those applicants

who are assigned in M . As in the case of DM , D′
M has an arc (ai, aj)

whenever ai prefers M(aj) to M(ai). It is clear that M is cyclic coalition-

free if and only if D′
M is acyclic. We can perform this last check in O(m)

time using depth-first search in D′
M . Putting these observations together,

we have the following result.

Proposition 6.3 ([18]). Let M be a matching in a given instance of ha.

We may check whether M is Pareto optimal in O(m) time, where m is the

number of acceptable applicant–house pairs.

It is straightforward to verify that a matching constructed by Algorithm

SDM as described in Sec. 6.1 is Pareto optimal. We therefore have the

following result.

Proposition 6.4. Let I be an instance of ha. Then we may find a Pareto

optimal matching in I in O(m) time using Algorithm SDM, where m is the

number of acceptable applicant–house pairs.

We have already seen that Pareto optimal matchings can have different sizes

(see Sec. 1.5.3). Indeed, relative to Fig. 1.2, Algorithm SDM will produce

a Pareto optimal matching of size i if applicant ai is processed first, for

i ∈ {1, 2}. Thus we require an alternative approach if a maximum Pareto

optimal matching is required.

6.2.1.2 Maximum Pareto optimal matchings

In this section we describe an O(
√
n1m) algorithm, due to Abraham et al.

[18], for finding a maximum Pareto optimal matching in a given ha instance

I, where n1 is the number of applicants and m is the number of acceptable
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applicant–house pairs. The algorithm operates in three phases, with each

phase enforcing one of the conditions for Pareto optimality given in Propo-

sition 6.2. We remark that, in Sec. 6.3 we present an algorithm, having the

same time complexity, for finding a maximum Pareto optimal matching in

the more general cha case. However it is instructive to begin by describing

the algorithm for the 1–1 case, not just because it aids understanding of the

algorithm for cha, but also because it illustrates how to obtain an O(m)

implementation of the classical Top Trading Cycles algorithm.

Phase 1 of the algorithm. Phase 1 involves using the Hopcroft–Karp

algorithm [281] to compute a maximum matching M in the underlying

graph G of I as defined in Sec. 1.5.2. This phase guarantees that M is

maximal, takes O(
√
n1m) time, and dominates the overall runtime of the

algorithm.

Phase 2 of the algorithm. In this phase, we transform M into a trade-

in-free matching by repeatedly identifying and promoting applicants who

prefer an unassigned house to their existing assignment. Each promotion

breaks an existing assignment, thereby freeing a house, which itself may be

a preferred assignment for a different applicant. With the aid of suitable

data structures, we can ensure that the next applicant to be identified for

promotion can be found efficiently.

For each house hj ∈ H , we maintain a linked list Lj of pairs (ai, r),

where ai ∈ A is an assigned applicant who finds hj acceptable, and r =

rank(ai, hj). Initially the pairs in Lj involve only those assigned applicants

ai who prefer hj to M(ai), though subsequently the pairs in Lj may contain

applicants ai who prefer M(ai) to hj . The initialisation of these lists can

be carried out using one traversal of the applicant preference lists, which

we assume are represented as doubly linked lists or arrays, in O(m) time.

For each assigned applicant ai, we also use this traversal to initialise a

variable, denoted by curri, which stores rank(ai,M(ai)). This variable is

maintained during the execution of the algorithm. One final initialisation

remains: construct a stack S of all unassigned houses hj where Lj is non-

empty. We now enter the loop described by Algorithm Phase 2 in Algorithm

6.1.

During each loop iteration we pop an unassigned house hj from S and

remove the first pair (ai, r) from the list Lj (which must be non-empty).

If ai prefers hj to M(ai) (i.e., r < curri) then ai is promoted from hk =

M(ai) to hj , also M and curri are updated, and finally hk, which is now
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Algorithm 6.1 Algorithm Phase 2 for ha [18]

Require: ha instance I and a maximal matching M
Ensure: M is a maximal and trade-in-free matching in I
1: while S 6= ∅ do

2: hj := S.pop();
3: (ai, r) := Lj .removeHead();
4: if r < curri then
5: {hj is unassigned in M , ai is assigned in M and prefers hj to M(ai)}
6: hk := M(ai);
7: M := (M\{(ai, hk)}) ∪ {(ai, hj)};
8: curri := r;
9: hj := hk;

10: end if

11: if Lj 6= ∅ then

12: S.push(hj);
13: end if

14: end while

unassigned, is pushed onto S if Lk is non-empty. If ai prefers M(ai) to hj

then hj is pushed back onto S if Lj is still non-empty.

Each iteration of the loop removes a pair from a list Lj. Since applicant

preference lists are finite and no new pair is added to a list Lj during a loop

iteration, the while loop must eventually terminate with S empty. At this

point no assigned applicant ai would trade M(ai) for an unassigned house,

and so M is trade-in-free. Additionally, M remains a maximum matching,

since any applicant assigned at the end of Phase 1 is also assigned at the

end of Phase 2. Finally, it is clear that this phase runs in O(m) time given

the data structures described above.

Phase 3 of the algorithm. In this phase, we transform M into a cyclic

coalition-free matching. Recall that cyclic coalitions in M correspond to

cycles in the envy graph D′
M . So a natural algorithm involves repeatedly

finding and satisfying cyclic coalitions in D′
M until no more cyclic coalitions

remain. This algorithm has a runtime of O(m2), since there are O(m) cyclic

coalitions, and cycle-detection takes O(m) time.

A better starting point for an efficient algorithm is Gale’s Top Trading

Cycles (TTC) algorithm [527], which has been the focus of much attention,

particularly in the game theory and economics literature [527,508,497,592,

6]. This method is also based on repeatedly finding and satisfying cyclic

coalitions, however the number of iterations is reduced by the following

observation: no applicant assigned to her first choice can be in a cyclic
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coalition. We remove such applicants from consideration, and since the

houses assigned to them are no longer exchangeable, they can be deleted

from the preference lists of the remaining applicants. This observation can

now be recursively applied to the reduced preference lists. At some point,

either no applicants remain, in which case the matching is cyclic coalition-

free, or no applicant is assigned to her reduced first choice (i.e., the first

choice on her reduced preference list).

In this last case, it turns out that there must be a cyclic coalition C inM ,

which can be found in O(n1) time by searching the envy graph restricted

to reduced first-choice edges. After satisfying C, each applicant in C is

assigned to her reduced first choice. Therefore, no applicant is in more than

one cyclic coalition, giving O(n1) cyclic coalitions overall. The runtime of

this preliminary implementation then is Ω(m+n2
1). However, with a careful

choice of data structures we can achieve an O(m) implementation.

To achieve this improvement, deletions of houses from applicants’ pref-

erence lists are not explicitly carried out. Instead, a house that is no longer

exchangeable is labelled (all houses are initially unlabelled). For each ap-

plicant ai ∈ A we maintain a pointer pi to the first unlabelled house on ai’s

preference list — this is equivalent to the first house on ai’s reduced pref-

erence list. Initially pi points to the first house on ai’s preference list, and

subsequently pi traverses left to right. Also, in order to identify cyclic coali-

tions, we maintain a counter zi for each applicant ai, which is initialised

to 0. Then, we enter the main body of Algorithm Phase 3, as shown in

Algorithm 6.2.

This algorithm repeatedly searches for cyclic coalitions, building a path

P of applicants (represented by a stack) in the envy graph restricted to

reduced first-choice edges. At each iteration of the while loop, we pop an

applicant ak from the stack and move pk down if necessary. If P cycles

(i.e., we find zk = 2), there is a cyclic coalition C: the applicants involved

in C are identified and removed from consideration, and the houses as-

signed to these applicants are labelled, during stack-popping operations. C

is also satisfied (in practice C can be satisfied during the stack popping

operations). Alternatively, if P reaches a dead-end (because ak is already

assigned to her first choice), this applicant is removed from consideration

and her assigned house is labelled. Otherwise, we keep extending the path

by following the reduced first-choice edges.

At the termination of this phase we note that M is cyclic coalition-free

by the correctness of the TTC algorithm [527]. AlsoM remains a maximum

trade-in-free matching, since each applicant and house assigned at the end



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

310 Pareto optimal matchings

Algorithm 6.2 Algorithm Phase 3 for ha [18]

Require: ha instance I and a maximal, trade-in-free matching M
Ensure: M is a Pareto-optimal matching in I
1: for each assigned applicant ai such that pi 6= M(ai) do
2: P := {ai}; {P is a stack of applicants}
3: zi := 1; {number of times ai is in P}
4: while P 6= ∅ do

5: ak := P.pop();
6: pk := most-preferred unlabelled house on preference list of ak;
7: if zk = 2 then {cyclic coalition identified}
8: C := cyclic coalition in P containing ak;
9: satisfy C;

10: for each at ∈ C do

11: label M(at);
12: zt := 0;
13: P.pop();
14: end for

15: else if pk = M(ak) then {dead end reached}
16: label M(ak);
17: zk := 0;
18: else {extend the path}
19: P.push(ak);
20: at := M(pk);
21: zt++;
22: P.push(at);
23: end if

24: end while

25: end for

of Phase 2 is also assigned at the end of Phase 3. Finally, it is clear this

phase runs in O(m) time given the data structures described above. We

summarise the preceding discussion with the following theorem.

Theorem 6.5 ([18]). Given an ha instance I, a maximum Pareto opti-

mal matching can be found in O(
√
n1m) time, where n1 is the number of

applicants and m is the number of acceptable applicant–house pairs. Such

a matching is also a maximum matching of applicants to houses in the

underlying graph of I.

Note that any improvement to the complexity of the above algorithm

would imply an improved algorithm for finding a maximum matching in a

bipartite graph. For, without loss of generality, let G = (A,H,E) be an

arbitrary bipartite graph with no isolated vertices. Construct an instance I
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of ha where G is the underlying graph by letting each applicant’s preference

list in I be an arbitrary permutation of her neighbours in G. By Theorem

6.5, any maximum Pareto optimal matching in I is also a maximum match-

ing in G. Since I may be constructed from G in O(m) time, the complexity

of finding a maximum matching in a bipartite graph is bounded above by

the complexity of finding a maximum Pareto optimal matching.

Initial endowment. Suppose that a subset A′ of the applicants already

own a house. Abraham et al. [18] described an individually rational modi-

fication of the algorithm, which ensures that every applicant in A′ ends up

with the same house or better.

We begin with a matchingM that pre-assigns every applicant ai ∈ A′ to

her existing house. We then truncate the preference list of each such ai by

removing all houses less preferable to her than M(ai). Now, we enter Phase

1, where we use the Hopcroft–Karp algorithm to exhaustively augment M

into some matching M ′. Members of A′ must still be assigned in M ′, and

since their preference lists were truncated, their new assignments must be

at least as good as those in M . Note that M ′ may not be a maximum

matching of A to H , however M ′ does have maximum cardinality among

all matchings that respect the initial endowment. The remaining two phases

do not move any applicant from being assigned to unassigned, and so the

result follows immediately.

6.2.1.3 Other results for Pareto optimal matchings

In contrast to the existence of an efficient algorithm for finding a maximum

Pareto optimal matching, it turns out that such an algorithm is unlikely to

exist for the minimisation problem, as we now show.

For a given instance I of ha, we denote by p−(I) and p+(I) the sizes

of a minimum and maximum Pareto optimal matching in I respectively.

Similarly, we denote by β−(G) and β+(G) the sizes of a minimum maximal

and a maximum matching in the underlying graph G of I respectively.

Using Algorithm Phase 2 and Algorithm Phase 3, we can transform any

maximal matching M in G to a Pareto optimal matching M ′ in I where

|M ′| = |M |. Hence p−(I) = β−(G)1 and p+(I) = β+(G). Note that the

problem of computing β−(G) is NP-hard even for subdivision graphs of

cubic graphs, as indicated by Theorem 1.7. The following result (a weaker

version of which was proved in Ref. [18]), is therefore immediate.

1In Ref. [18] only the inequality p−(I) ≥ β−(G) was observed.
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Theorem 6.6. Given an ha instance I, the problem of finding a minimum

Pareto optimal matching is NP-hard. The result holds even if each applicant

finds two houses acceptable and each house finds at most three applicants

acceptable, or vice versa.

It is also known that β−(G) ≥ β+(G)/2 [399]. Hence as p−(I) = β−(G)

and p+(I) = β+(G), the following result is immediate.

Theorem 6.7 ([18]). Given an ha instance, the problem of finding a

minimum Pareto optimal matching is approximable within a factor of 2.

It is also possible to prove an interpolation result for Pareto optimal

matchings: namely, for a given ha instance I, there are Pareto optimal

matchings of all sizes between p−(I) and p+(I). One way of proving this

is to observe that the underlying graph G admits a maximal matching Mk

for each k (β−(G) ≤ k ≤ β+(G)) [276]. Again, using the fact that Mk can

be transformed to a Pareto optimal matching M ′
k such that |M ′

k| = |Mk|,
we obtain the following result.

Theorem 6.8 ([18]). For a given instance I of ha, there exists a Pareto

optimal matching of size k, for each k (p−(I) ≤ k ≤ p+(I)).

The final result that we present in this subsection gives a necessary and

sufficient condition, checkable in linear time, for an ha instance to admit a

unique Pareto optimal matching.

Theorem 6.9 ([18]). An instance I of ha admits a unique Pareto opti-

mal matching M if and only if every applicant is assigned in M to her first

choice.

Fleischer and Wang [219] considered the problem of finding Pareto opti-

mal matchings in a dynamic setting where applicants and houses can both

enter and leave the market. Let I be an ha instance and let M be a maxi-

mum Pareto optimal matching in I. The authors showed that, after a single

applicant or house arrives or leaves, M can be updated to yield a maximum

Pareto optimal matching for the new ha problem instance in O(m) time.

Furthermore, given two Pareto optimal matchings M1 and M2 in I, the

authors gave an O(m) algorithm to transform M1 into M2 by alternating

along a sequence of disjoint cycles in a graph that is similar to the envy

graph for M1. The authors remarked that this latter algorithm could lead

to a method for listing all Pareto optimal matchings in I.
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6.2.1.4 Matchings in the core

Recall the definition of hm from Sec. 1.5.2. The notion of Pareto optimality

in ha is closely related to the concept of core matchings in the hm context

[508]. In the literature, definitions of core outcomes are invariably expressed

in terms of a cooperative game-theoretic setting, however we shall adapt the

notation in order to be a closer fit with the context of matching problems

with preferences. In what follows, we recall definitions of notation and

terminology relating to hm from Sec. 1.5.2.

Definition 6.10 ([508]). Let I be an instance of hm where M0 is the

initial endowment, and let M be an individually rational matching in I.

Let M ′ be a matching in I, and let S be the set of applicants who are

assigned in M ′. Then M ′ weakly blocks M with respect to the coalition S

if:

(1) {M ′(ai) : ai ∈ S} = {M0(ai) : ai ∈ S};
(2) some ai ∈ S prefers M ′(ai) to M(ai);

(3) no ai ∈ S prefers M(ai) to M ′(ai).

M is a strict core matching, or M is in the strict core2, if there is no other

matching in I that weakly blocks M .

In the above definition, Condition 1 states that the members of the coalition

can only improve by exchanging the resources that they bring to the market

(via their initial endowment M0); Condition 2 states that some member of

the coalition is better off M ′ than in M ; whilst Condition 3 states that

no member of the coalition is worse off in M ′ than in M . Note that M

is Pareto optimal if and only if M is not weakly blocked by any matching

M ′ such that |M ′| = n1 (here the coalition comprises all applicants and is

referred to as the grand coalition). Hence a strict core matching is Pareto

optimal.

Fig. 6.2 gives an example hm instance (where each applicant’s initial

endowment in M0 is the last house on her preference list) that has a Pareto

optimal matching that is not in the strict core. To see this, observe that

the matching

M = {(a1, h4), (a2, h1), (a3, h2), (a4, h3)}

is Pareto optimal, but is weakly blocked by M ′ = {(a3, h4), (a4, h3)}.
2The strict core is sometimes referred to as the strong core [129].
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a1 : h4 h3 h1

a2 : h4 h1 h2

a3 : h4 h1 h2 h3

a4 : h3 h2 h4

Fig. 6.2 An hm instance having a Pareto optimal matching that is not in the strict core

Roth and Postlewaite [508] showed that every hm instance I admits

a unique strict core matching, which can be found using Gale’s TTC al-

gorithm [527]. This algorithm is essentially Algorithm Phase 3 shown in

Algorithm 6.2 as applied to the initial endowment M0 (which must be

maximal and trade-in-free in I as |M0| = n1 and n1 = n2, where n2 is the

number of houses). We thus obtain the following result.

Theorem 6.11 ([508]). Let I be an instance of hm. A strict core match-

ing can be found in O(m) time, where m is the number of acceptable

applicant–house pairs in I.

Roth [497] proved that the TTC algorithm is strategy-proof.

Notice that, given an ha instance I, the algorithm given in Sec. 6.2.1.2

produces a strict core matching relative to an hm instance I ′ obtained as

follows. Firstly we let M be a matching produced at the end of Phase 2.

Then, for every applicant ai who is unassigned in M , extend ai’s preference

list so that, in I ′, we append a unique dummy house h′
i to the end of ai’s

list in I. For every applicant ai who is assigned in M , ai’s preference list in

I ′ is obtained by truncating her preference list in I after M(ai). We then

remove from I ′ the houses that do not feature in any applicant’s preference

list; as M is maximal and trade-in-free, it follows that the numbers of

applicants and houses in I ′ (including the dummy houses) are now equal.

The initial endowment in I ′ is then M together with the pairs (ai, h
′
i) for

every applicant ai who is unassigned in M . Note that the matching M

produced at the end of Phase 2 is not unique, and hence the same is true

for I ′.

6.2.2 Preference lists with ties

6.2.2.1 Characterisation of Pareto optimal matchings

In this subsection we consider the House Allocation problem with Ties

(hat) as defined in Sec. 1.5.7. In this setting, the definition of a Pareto

optimal matching is unchanged from Sec. 1.5.3. We now give a series of def-
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initions that work towards a characterisation of Pareto optimal matchings

in a given hat instance I. Let M be an arbitrary matching in I.

An alternating path coalition with respect to M comprises a sequence

C = 〈ai0 , ai1 , . . . , air−1
, hk〉, for some r ≥ 1, where aij is an assigned appli-

cant (0 ≤ j ≤ r−1) and hk is an unassigned house. If r = 1 then ai0 prefers

hk to M(ai0). Otherwise if r ≥ 2 then ai0 prefers M(ai1) to M(ai0), aij
prefers M(aij+1

) to M(aij ) or is indifferent between them (1 ≤ j ≤ r − 2),

and air−1
prefers hk to M(air−1

) or is indifferent between them.

An augmenting path coalition with respect to M comprises a sequence

C = 〈ai0 , ai1 , . . . , air−1
, hk〉, for some r ≥ 1, where aij is an assigned ap-

plicant (1 ≤ j ≤ r − 1), hk is an unassigned house, ai0 is an unassigned

applicant and M(ai1) ∈ A(ai0), aij prefers M(aij+1
) to M(aij ) or is indif-

ferent between them (1 ≤ j ≤ r− 2), and air−1
prefers hk to M(air−1

) or is

indifferent between them. Note that M is maximal if and only if M admits

no augmenting path coalition with r = 1.

A cyclic coalition with respect to M is a sequence of applicants C =

〈ai0 , ai1 , . . . , air−1
〉, for some r ≥ 2, all assigned in M , such that aij prefers

M(aij+1
) toM(aij ) or is indifferent between them for each j (0 ≤ j ≤ r−1),

and aij prefersM(aij+1
) to M(aij ) for some j (0 ≤ j ≤ r−1) (all subscripts

are taken modulo r when reasoning about cyclic coalitions).

We define an improving coalition to be an alternating path coalition, an

augmenting path coalition or a cyclic coalition. A matching M is improving

coalition-free if it admits no improving coalition.

Given an improving coalition C, the matching

M ′ = (M\{(aij ,M(aij )) : δ ≤ j ≤ r−1})∪{(aij ,M(aij+1
)) : 0 ≤ j ≤ r−1}

is defined to be the matching obtained from M by satisfying C (δ = 1 in

the case that C is an augmenting path coalition, otherwise δ = 0).

The following proposition gives a necessary and sufficient condition for

a matching to be Pareto optimal. In the proof of the result, we recall the

definition of ⊳ from Sec. 1.5.3.

Proposition 6.12. Let I be an instance of hat and let M be a matching in

I. Then M is Pareto optimal if and only if M is improving coalition-free.

Proof. Let M be a matching in I that is improving coalition-free, and

suppose for a contradiction that M is not Pareto optimal. Then there

exists some matching M ′ 6= M such that M ′ ⊳ M . Let at be an applicant

who prefers M ′ to M . Consider the graph G = M ⊕M ′. Every connected

component of G is an alternating path or an alternating cycle. In particular
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there exists a connected component C of G containing at. We consider three

cases.

• Case (i): C is an alternating path with an even number of edges.

If both endpoint vertices of C are applicants, then there is an appli-

cant who is assigned in M and unassigned in M ′, a contradiction since

M ′ ⊳ M . Hence both endpoint vertices of C are houses, so that ev-

ery applicant in C is assigned in both M and M ′. We build a se-

quence P = 〈ai0 , ai1 , . . . , air−1
, hk〉, for some r ≥ 1, where ai0 = at,

aij+1
= M(M ′(aij )) (0 ≤ j ≤ r − 2), hk = M ′(air−1

) and hk is unas-

signed in M . That is, P is a sub-path of C starting at at. It follows that

P is an alternating path coalition with respect to M , a contradiction.

• Case (ii): C is an alternating path with an odd number of edges. If

both end edges of C are in M , then there is an applicant who is assigned

in M and unassigned in M ′, a contradiction since M ′ ⊳ M . Hence both

end edges of C are in M ′, so that C gives rise to an augmenting path

coalition with respect to M , a contradiction.

• Case (iii): C is an alternating cycle. Then clearly the applicants in C

form a cyclic coalition with respect to M , a contradiction.

Hence M is Pareto optimal.

Conversely let M be a Pareto optimal matching in I. If M admits an

improving coalition C, let M ′ be the matching obtained by satisfying C.

Then M ′ ⊳ M , a contradiction. Hence M is improving coalition-free. �

The characterisation of Pareto optimal matchings in I given by Propo-

sition 6.12 leads to the following linear-time algorithm for checking a given

matching M for Pareto optimality. As a pre-processing step, we form a

new instance I ′ of hat from I by truncating the preference list of each

applicant ai ∈ A who is assigned in M in such a way that ai removes any

house hk that she finds less preferable than M(ai). Let G = (A,H,E) be

the underlying graph of I ′.

The search for an alternating path coalition is a modified breadth-first

search in G that fans out from each applicant ai who is assigned in M and

prefers some house to M(ai). In general, the search traverses from left to

right along edges not in M (i.e., for a given applicant ai, across all edges

(ai, hj) /∈ M such that either ai prefers hj toM(ai) or is indifferent between

them), and from right to left along edges in M . If we reach an unassigned

house, we have found an alternating path coalition. Clearly each edge in G

is traversed at most once, and hence this step takes O(m) time.
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The process is similar when searching for augmenting path coalitions —

this time the breadth-first search in G fans out from each applicant who

is unassigned in M . As before, if we reach an unassigned house, we have

found an augmenting path coalition. Again, the time taken is O(m).

In order to detect cyclic coalitions, create a directed graph D from G

by orienting edges in M from left to right, and orienting edges in E\M
from right to left. As G is bipartite, clearly any directed cycle in D gives

an alternating cycle in G and vice versa. If (hj , ai) is an arc of D where ai
prefers hj to M(ai), colour this arc red. Let S be the set of red arcs in D.

Now create the strongly connected components of D in O(m) time [561].

For each red arc (hj , ai) in S, simply test whether ai and hj are in the same

strongly connected component. If so, M admits a cyclic coalition. If this

property is not satisfied for all red arcs, then M admits no cyclic coalition.

Clearly this step can be carried out in O(m) overall time.

We thus obtain the following result.

Proposition 6.13. Let I be an instance of hat and let M be a matching

in I. Then M can be tested for Pareto optimality in O(m) time, where m

is the number of acceptable applicant–house pairs in I.

An arbitrary Pareto optimal matching in I can be found inO(m) time by

breaking the ties arbitrarily and applying Algorithm SDM (see Proposition

6.4). We thus obtain the following.

Proposition 6.14. Let I be an instance of hat. Then we may find a

Pareto optimal matching in I in O(m) time, where m is the number of

acceptable applicant–house pairs in I.

Clearly the Pareto optimal matchings in I can have different sizes (as the

same is true even for ha), and this approach cannot guarantee to maximise

the size of a Pareto optimal matching.

A maximum Pareto optimal matching in I can be found by constructing

a minimum weight maximum cardinality matching in I in O(
√
nm logn)

time as described in Sec. 1.5.4 (the same definition of rank applies in the

hat case), where n = n1+n2 is the total number of applicants and houses.

However it remains open as to whether an O(
√
nm) algorithm exists for

this problem. Achieving such a bound may involve extending the TTC

algorithm to handle ties, and to this end the papers of Yılmaz [591], Alcalde-

Unzu and Molis [36], Jaramillo and Manjunath [348], and Aziz and de

Keijzer [56] may be relevant.
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a1 : h2 h3 h1

a2 : (h1 h3) h2

a3 : h2 h1 h3

Fig. 6.3 An instance of hmt with no strict core matching due to Shapley and Scarf
[527]

6.2.2.2 Matchings in the core

Just as we relaxed the requirement for preference lists to be strict in an

instance of ha in order to obtain hat, we can do likewise for housing

markets. The Housing Market with Ties (hmt) is the generalisation of

hm in which preference lists can include ties. In the hmt setting, we can

define weak blocking and the strict core in exactly the same way as in

Definition 6.10.

In contrast to the case for hm, an hmt instance need not admit a strict

core matching. To illustrate this, consider the hmt instance I, due to Shap-

ley and Scarf [527], given in Fig. 6.3 (each applicant’s initial endowment

M0 is the last house on her preference list). It may be verified that every

individually rational matching in I is weakly blocked by some matching.

Quint and Wako [487] gave an O(n3) algorithm for finding a strict core

matching or reporting that none exists, given an instance of hmt, where

n = n1(= n2) is the number of applicants.

A weaker notion of the strict core exists in the hmt context (and indeed

in the hm setting too), which we now define.

Definition 6.15 ([508]). Let I be an instance of hmt where M0 is the

initial endowment, and let M be an individually rational matching in I. Let

M ′ be a matching in I, and let S be the set of applicants who are assigned

in M ′. Then M ′ strongly blocks M with respect to the coalition S if:

(1) {M ′(ai) : ai ∈ S} = {M0(ai) : ai ∈ S};
(2) each ai ∈ S prefers M ′(ai) to M(ai).

M is a core matching, or M is in the core3, if there is no other matching

in I that strongly blocks M .

A core matching always exists in a given hmt instance I (though need

not be unique), and can be found in O(m) time, where m is the number

of acceptable applicant–house pairs. To see this, simply break the ties

3The core is sometimes referred to as the weak core [105].
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arbitrarily to obtain an hm instance I ′. As in Sec. 6.2.1.4, find a strict core

matching in I ′ in O(m) time. Such a matching is then in the core in I. We

thus arrive at the following result.

Theorem 6.16 ([508]). Let I be an instance of hmt. A core matching

can be found in O(m) time, where m is the number of acceptable applicant–

house pairs in I.

Clearly however, the different ways in which the ties in I are broken will

in general affect the core matching that is produced. Sotomayor [545] also

gave a non-constructive proof of the existence of a core matching in I. We

remark that a core matching need not be Pareto optimal.

6.3 Capacitated House Allocation problem

In this section we now consider the case where houses may be assigned more

than one applicant, though all preferences are again strict — thus we are

given an instance I of cha as defined in Sec. 1.5.7. Again, the problem we

mainly focus on is that of finding a maximum Pareto optimal matching in I.

Pareto optimal matchings in I were defined in Sec. 1.5.7. A straightforward

adaptation of Algorithm SDM will yield a Pareto optimal matching in I,

but again different processing orders for the applicants will in general lead

to Pareto optimal matchings of different sizes.

As in Sec. 1.5.4, a maximum Pareto optimal matching can be found by

constructing a minimum weight maximum cardinality matching M in the

underlying graph G of I, however note that (i) G is a capacitated bipartite

graph (where each vertex corresponding to an applicant has capacity 1, and

each vertex corresponding to a house hj ∈ H has capacity cj), and (ii) the

time complexity for constructing M is O(Cmin{m logn1, n
2
1}) [226], where

n1 is the number of applicants, m is the number of acceptable applicant–

house pairs, and C is the sum of the house capacities.

Sng [535] gave a faster algorithm for finding a maximum Pareto opti-

mal matching in I, with running time O(
√
n1m). In order to describe this

algorithm, we again require a characterisation of Pareto optimal match-

ings. The necessary and sufficient conditions for a matching to be Pareto

optimal are similar to those in Proposition 6.2 for the ha case, however we

need to interpret maximal and trade-in-free slightly differently in the cha

context. A matching M in I is maximal if there is no applicant–house pair

(ai, hj) such that ai is unassigned in M and finds hj acceptable, and hj
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is undersubscribed in M . Also M is trade-in-free if there is no applicant–

house pair (ai, hj) such that ai is unassigned in M and finds hj acceptable,

and hj is undersubscribed in M . With these definitions, Sng [535] proved

the following results.

Proposition 6.17 ([535]). Let M be a matching in a given instance of

cha. Then M is Pareto optimal if and only if M is maximal, trade-in-free

and cyclic coalition-free.

Proposition 6.18 ([535]). Let M be a matching in a given instance of

cha. Then we may check whether M is Pareto optimal in O(m) time,

where m is the number of acceptable applicant–house pairs.

Sng’s algorithm for finding a maximum Pareto optimal matching in

I again has three phases, as in the ha case. Phase 1 involves finding a

maximum cardinality matching M in the underlying capacitated bipartite

graph G. This can be accomplished in O(
√
n1m) time as indicated by

Theorem 1.6. Clearly M is maximal.

Phase 2 involves modifying M to ensure that it is trade-in-free. The

algorithm for carrying out this step is very similar to Algorithm Phase 2

for ha shown in Algorithm 6.1. We simply outline the modifications here

for cha. Firstly, between lines 8 and 9 of Algorithm Phase 2, we need to

test whether hj needs to be pushed back onto the stack. This would be re-

quired if (i) hj is still undersubscribed even after ai is promoted to hj , and

(ii) Lj remains non-empty. Also at line 11 of Algorithm Phase 2, we must

determine whether hj is not already in the stack before the push operation

(it is straightforward to maintain a boolean for each house which indicates

whether it is in the stack). This situation could arise, for example, when a

house hk with capacity 2 is preferred by some applicant aj to M(aj), and

M(hk) = {ai}. It is possible that ai is promoted from hk to some other

house before aj is promoted, meaning that hk loses ai as an assignee. How-

ever hk (now empty) was already on the stack, so should not be added again.

Phase 3 is a generalisation of Algorithm Phase 3 for ha shown in Algo-

rithm 6.2. It is essentially an O(m) implementation of the TTC algorithm

extended to cha4. In this phase, we transform the maximal and trade-in-

4Abdulkadiroǧlu and Sönmez [7] extended the TTC algorithm to the school choice
context, which is a many–one bipartite matching problem with preferences of students
over schools. However their problem differs from cha in that the students have priorities
at schools. Also the authors did not consider the computational complexity of their
algorithm.
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Algorithm 6.3 Algorithm Phase 3 for cha [535]

Require: cha instance I and a maximal, trade-in-free matching M
Ensure: M is a Pareto-optimal matching in I
1: M ′ := M ;
2: Q := ∅;
3: for each applicant ai ∈ A do

4: if f(ai) = M(ai) then
5: Q.add(ai);
6: end if

7: end for

8: Process(Q);
9: for each unlabelled applicant ai ∈ A do

10: P := {ai}; {P is a stack of applicants}
11: zi := 1; {counter records the number of times an applicant is in P}
12: while P 6= ∅ do

13: aj := P .pop();
14: if zj = 2 then

15: ak := aj ;
16: repeat

17: Q.add(ak);
18: ak := P .pop();
19: until ak = aj

20: Process(Q);
21: else

22: P .push(aj);
23: choose any ak ∈ M ′(f(aj));
24: zk++;
25: P .push(ak);
26: end if

27: end while

28: end for

free matching M constructed after Phases 1 and 2 into a matching M that

admits no cyclic coalition and is therefore Pareto optimal. Algorithm Phase

3 for cha is shown in Algorithm 6.3.

Throughout Phase 3, we maintain a stack of applicants P (which im-

plicitly represents vertices in the envy graph) in order to enable cyclic coali-

tions to be detected and satisfied. Also, for each applicant ai, we maintain

a pointer f(ai) to the first house on ai’s preference list (this pointer is as-

sumed to be implicitly updated as necessary after any deletions from ai’s

preference list). We also maintain a queue Q of applicants ai who are wait-

ing to be assigned to f(ai) in M . Initially each applicant ai such that
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Algorithm 6.4 Algorithm Process(Q) [535]

Require: a queue of applicants Q
Ensure: applicants in Q are processed (see accompanying description)
1: while Q 6= ∅ do

2: ai := Q.removeHead();
3: hj := f(ai);
4: hk := M(ai); {possibly hj = hk}
5: M := (M\{(ai, hk)}) ∪ {(ai, hj)};
6: M ′ := M ′\{(ai, hk)};
7: label ai;
8: if ai ∈ P then

9: remove ai from P ;
10: end if

11: if M ′(hk) = ∅ then

12: for each unlabelled at ∈ Lk do

13: delete hk from the preference list of at;
14: if f(at) = M(at) then
15: Q.add(at);
16: end if

17: end for

18: end if

19: end while

f(ai) = M(ai) is added to Q. We take a copy M ′ of matching M at the

outset of Phase 3; after we assign a given applicant ai to a house in M

during Phase 3, we remove the pair (ai,M(ai)) from M ′. Finally, we also

maintain a linked list Lj for each house hj containing applicants ai who

prefer hj to their assigned house at the end of Phase 2.

After Q is initialised at the beginning of Algorithm Phase 3, we call

an additional subroutine called Algorithm Process(Q), shown in Algorithm

6.4. This subroutine makes use of the observation (as in Ref. [18]) that no

applicant ai assigned to her first choice house hj in M can be involved in

a cyclic coalition. This subroutine (which may also be called subsequently

during Phase 3) considers each applicant ai inQ in turn, removing ai fromQ

and promoting ai from hk = M(ai) to hj = f(ai) in M (note that, possibly

hj = hk in general (certainly this is true when Algorithm Process(Q) is

first called), in which case ai’s assignment in M is unchanged). The pair

(ai, hk) is then removed from M ′. Applicant ai is then labelled to ensure

that she is not subsequently added to the stack P (all applicants are initially

unlabelled at the outset of Phase 3). Thus, an agent is added to Q at most

once during an execution of Algorithm Phase 3.
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When Algorithm Process(Q) is first called, P must be empty. However,

this need not be true during a subsequent execution of Process(Q). We

check whether ai lies in P , and if so, ai is removed from P so that she is

not considered further by Algorithm Phase 3.5 If M ′(hk) is empty after the

assignment of ai to hj , then we remove hk from the preference lists of the

remaining unlabelled applicants in Lk, since hk can no longer be involved

in a cyclic coalition. We refer to those preference lists from which houses

have been removed as reduced preference lists. We then apply the earlier

observation, namely that an applicant assigned to her first choice house

cannot be involved in a cyclic coalition, recursively to the reduced lists by

adding to Q any applicant at for whom f(at) = M(at).

During the main loop of Algorithm Phase 3, for each applicant ai who

is unlabelled (and therefore not assigned to f(ai) in M), we use the inner

while loop to build a path of applicants (represented by P ) starting from

ai and check if P cycles. To do so, we use a counter zi, for each applicant

ai, which we assume is initialised to 0 at the outset of Phase 3.

If zj 6= 2 for some applicant aj in P during an iteration of the while

loop, then we extend P by implicitly adding an edge in the envy graph,

from aj to some agent in M ′(f(aj)) who aj envies, in line 23. Note that

M ′(f(aj)) is non-empty by the execution of Algorithm Process(Q).

Otherwise if zj = 2, it follows that we have a cyclic coalition in P

starting from aj . We satisfy C by popping each applicant ak in C from P

until we remove C, and add each such ak to Q. We then call Process(Q)

to assign each ak to f(ak) in M , to label each ak in order to remove the

applicant from further consideration by the algorithm, as well as to remove

M(ak)(= M ′(ak)) from the preference lists of the remaining unlabelled

applicants if the house becomes empty in M ′.

Sng [535] established the correctness of Algorithm Phase 3 for cha, and

also described suitable data structures for its efficient implementation. We

summarise his arguments with the following result.

Theorem 6.19 ([535]). Given a cha instance I, a maximum Pareto op-

timal matching can be found in O(
√
n1m) time6, where n1 is the number of

5If Q = 〈ai1 , . . . , ait 〉 at the beginning of a call to Algorithm Process(Q), and aij is
removed from P by line 9 for some j (1 ≤ j ≤ t) during this call, then aik will also
be removed from P by this line during the same execution of Algorithm Process(Q), for
each k (j + 1 ≤ k ≤ t).
6In Ref. [535], the weaker upper bound of O(

√
Cm) was given as the complexity for

this algorithm, where C is the total capacity of the houses. The improved upper bound
follows by the remark in Footnote 6 on Page 16.
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applicants and m is the number of acceptable applicant–house pairs. Such

a matching is also a maximum matching of applicants to houses in the

underlying graph of I.

Again, the algorithm can be extended in a similar way to that described

in Sec. 6.2.1.2 if a subset A′ of the applicants already own a house, and we

must find a maximum Pareto optimal matching subject to the condition

that each applicant in A′ obtains either her initial endowment or better.

6.4 Hospitals / Residents problem

It is also possible to study Pareto optimal matchings in the variant of cha

in which houses have preferences over applicants. We thus arrive at the hr

setting. The concept of a Pareto optimal matching in an hr instance was

defined on Page 147 in the subsection on Pareto stable matchings (recall

that a hospital’s preferences over sets of residents was defined to be respon-

sive to its preferences over individual residents, where the term responsive

was also defined in that subsection).

Recall the definitions of a Pareto improvement cycle and a Pareto im-

provement chain from Definition 3.12. These definitions were given for the

hrt context; in the hr setting we can delete all occurrences of “is indiffer-

ent between” when reasoning about residents’ preferences in each case (of

course it is still possible, even in the hr setting, for a hospital to be indif-

ferent between two sets of residents). Erdil and Ergin [192] showed that a

matching M in an hr instance is Pareto optimal if and only if it admits

no Pareto improvement cycle or Pareto improvement chain. Moreover, Sng

[535] proved that the existence of each of these structures can be checked

in linear time. This leads to the following result.

Proposition 6.20 ([192,535]). Let I be an instance of hr and let M be

a matching in I. Then M is Pareto optimal if and only if M admits no

Pareto improvement cycle or Pareto improvement chain. On the basis of

this characterisation, we may check whether M is Pareto optimal in O(m)

time, where m is the number of acceptable resident–hospital pairs in I.

Clearly a stable matching in I is Pareto optimal. However Sng [535]

gave a family of arbitrarily large hr instances that admit a Pareto optimal

matching that is twice the size of a stable matching. This motivates the

problem of finding a maximum Pareto optimal matching. Sng [535] proved
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that this problem can be solved by essentially truncating the preference

lists of the agents and using Phases 1 and 3 of the corresponding algorithm

for cha. This led him to the following result.

Theorem 6.21 ([535]). Let I be an instance of hr. A maximum Pareto

optimal matching in I can be found in O(
√
n1m) time, where n1 is the

number of residents and m is the number of acceptable resident–hospital

pairs in I.

6.5 Stable Roommates problem

6.5.1 Introduction

Pareto optimality can also be defined in instances of sri [28, 455]: indeed,

the definition of a Pareto optimal matching in sri is completely analogous

to the definition given for ha in Sec. 1.5.3. In this section we study Pareto

optimal matchings in instances of sri and its variants. We begin with some

preliminary observations in Sec. 6.5.2 and then give a characterisation of

Pareto optimal matching in an sri instance in Sec. 6.5.3. In Sec. 6.5.4 we

deal with the problem of finding a mxaimum Pareto optimal matching in

an sri instance, whilst Sec. 6.5.5 considers Pareto optimal matchings in

cfg instances.

6.5.2 Preliminary observations

A straightforward adaptation of Algorithm SDM for ha leads to an O(m)

algorithm for finding a Pareto optimal matching in a given sri instance I,

where m is the number of acceptable pairs of agents. This algorithm, which

we call the Serial Dictatorship Mechanism for sri, denoted by Algorithm

SDM-SRI for short, can be found in Algorithm 6.5. The correctness and

complexity of this algorithm is established by the following proposition.

Proposition 6.22 ([28]). Let I be an instance of sri. Then Algorithm

SDM-SRI finds a Pareto optimal matching in I in O(m) time, where m is

the number of acceptable pairs of agents in I.

It is not difficult to see that, in a given sri instance, Pareto optimal

matchings may be of different sizes. For, consider the sri instance I1 shown

in Fig. 6.4. It may be verified that each of M1 = {{a2, a3}} and M2 =

{{a1, a2}, {a3, a4}} is Pareto optimal in I1. Note that Algorithm SDM-SRI
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Algorithm 6.5 Algorithm SDM-SRI [28]

Require: sri instance I
Ensure: return M , a Pareto optimal matching in I
1: M := ∅;
2: for each agent ai ∈ A do

3: set ai to be unlabelled;
4: end for

5: while there exists an unlabelled agent ai ∈ A do

6: if ai finds an unlabelled agent acceptable then

7: aj := most-preferred unlabelled agent on ai’s list;
8: M := M ∪ {{ai, aj}};
9: label ai and aj ;

10: end if

11: end while

12: return M ;

constructs M1 if a1 is processed first, and constructs M2 if a2 is processed

first. Moreover, by replicating I1 we can obtain an arbitrarily large family

of sri instances for which the size of a maximum Pareto optimal matching

is twice the size of a stable matching.

Note that Algorithm SDM-SRI may not be capable of finding all Pareto

optimal matchings in a given sri instance. For example, consider the sri

instance I2 shown in Fig. 6.4. It is straightforward to verify that M =

{{a1, a2}, {a3, a4}} is Pareto optimal in I2, but no execution of Algorithm

SDM-SRI will construct M . This observation contrasts with the situation

for a given ha instance I, where, for any given Pareto optimal matching

M in I, there is some execution of Algorithm SDM that constructs M

[18, Lemma 1].

The concept of exchange-stability (see Sec. 5.7) superficially resembles

Pareto optimality in the sri context, however they are distinct properties.

To see this, consider the sr instances I3 and I4 shown in Fig. 6.4 (in I4,

the symbol “. . . ” denotes all remaining agents in arbitrary order). It is

not difficult to see that M = {{a1, a3}, {a2, a4}} is Pareto optimal but not

exchange-stable in I3, whilst M = {{a1, a2}, {a3, a4}, {a5, a6}} is exchange-

stable but not Pareto optimal in I4.

6.5.3 Characterising Pareto optimal matchings

We next give a characterisation of Pareto optimal matchings in sri that

leads to a convenient necessary and sufficient condition for a matching to
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a1 : a2 a1 : a3 a2 a4 a1 : a4 a3 a2 a1 : a6 a2 . . .
a2 : a3 a1 a2 : a4 a1 a3 a2 : a3 a4 a1 a2 : a3 a1 . . .
a3 : a2 a4 a3 : a2 a4 a1 a3 : a1 a2 a4 a3 : a2 a4 . . .
a4 : a3 a4 : a1 a3 a2 a4 : a2 a1 a3 a4 : a5 a3 . . .

a5 : a4 a6 . . .
Instance I1 Instance I2 Instance I3 a6 : a1 a5 . . .

Instance I4

Fig. 6.4 Four instances of sri

be Pareto optimal. This condition involves a structure defined as follows

(in the definition, recall that bp(M) denotes the set of blocking pairs with

respect to a given matching M).

Definition 6.23 ([28]). Let M be a matching in an instance I of sri.

An improving coalition with respect to M is a sequence of distinct agents

C = 〈ai0 , ai1 , . . . , ai2r−1
〉, for some r ≥ 1, such that:

(1) {ai2j−1
, ai2j} ∈ M (1 ≤ j ≤ r − 1);

(2) {ai2j , ai2j+1
} ∈ bp(M) (0 ≤ j ≤ r − 1);

(3) Either (a) ai0 , ai2r−1
are unmatched in M , or (b) r ≥ 2 and

{ai0 , ai2r−1
} ∈ M .

If C satisfies Condition 3(a), we also refer to C as an augmenting coalition,

otherwise we also refer to C as a cyclic coalition. The matching

M ′ = (M\{{ai2j−1
, ai2j} : 1 ≤ j ≤ r}) ∪ {{ai2j , ai2j+1

} : 0 ≤ j ≤ r − 1}

is defined to be the matching obtained from M by satisfying C, where ad-

dition is taken modulo 2r. (Note that if C is an augmenting coalition then

{ai0 , ai2r−1
} /∈ M .)

We remark that Definition 6.23 was also given independently by Morrill

[455] for the special case that I is an instance of sr. The following propo-

sition indicates that Pareto optimality is equivalent to the absence of an

improving coalition.

Proposition 6.24 ([28]). Let M be a matching in a given instance I of

sri. Then M is Pareto optimal in I if and only if M admits no improving

coalition.
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Again, we note that Proposition 6.24 was proved independently by Morrill

[455] for the special case that I is an instance of sr.

We now show that Proposition 6.24 leads to an O(m) algorithm for

checking a matching for Pareto optimality in an instance I of sri, where m

is the number of acceptable pairs of agents in I. Let G be the underlying

graph of I (i.e., G has a vertex for each agent and an edge between each

pair of acceptable agents). We form a subgraph GM of G by letting GM

contain only those edges that belong to M∪bp(M); any isolated vertices are

removed from GM . By Proposition 6.24, M is Pareto optimal in I if and

only if M admits no augmenting path or alternating cycle in GM . We may

test for the existence of the former structure in O(m) time [225, 229]. For

the latter structure, we remove any unmatched vertices from GM (and any

edges incident to them) and apply the O(m) alternating cycle detection

algorithm of Gabow et al. [228]. This discussion leads to the following

conclusion.

Proposition 6.25 ([28]). Let I be an instance of sri and let M be a

matching in I. Then we may check whether M is Pareto optimal in O(m)

time, where m is the number of acceptable pairs of agents in I.

Given an instance I of sr with n agents, and given a matching M in I,

Morrill [455] gave an explicit O(n2) algorithm for checking M for Pareto

optimality in I. Essentially his algorithm involves detecting alternating

cycles, as above.

We next observe that a stable matching M in an sri instance I must be

Pareto optimal. For, suppose not. Then M admits an improving coalition

by Proposition 6.24, which implies that bp(M) 6= ∅ by Definition 6.23, a

contradiction. We thus obtain the following result.

Proposition 6.26 ([28]). Let I be an instance of sri and let M be a

stable matching in I. Then M is Pareto optimal.

6.5.4 Maximum Pareto optimal matchings

We now turn to the problem of finding a maximum Pareto optimal matching

in an sri instance I. This problem may be solved by imposing weights on

the edges in the underlying graph G = (A,E) of I, where for each edge

{ai, aj} ∈ E, the weight of this edge is rank(ai, aj) + rank(aj , ai) where

rank(ai, aj) is as defined in Sec. 1.4.2. We may construct a minimum weight

maximum cardinality matching M in G in O(
√

nα(n,m)m log3/2 n) time
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[231], where n = |A|, m = |E| and α is the inverse Ackermann function. The

following result indicates that M is a maximum Pareto optimal matching.

Proposition 6.27 ([28]). Let M be a minimum weight maximum car-

dinality matching in the weighted graph G defined above. Then M is a

maximum Pareto optimal matching in I.

Note that the above proposition also indicates that the size of a max-

imum Pareto optimal matching in I is equal to the size of a maximum

matching in G. An alternative way to find a maximum Pareto optimal

matching in I is to start with a maximum matching in G, which may be

found in O(
√
nm) time [451,577]. Then, we could try to transform M into

a maximum Pareto optimal matching in I by finding and satisfying a se-

quence of cyclic coalitions (M cannot admit an augmenting coalition as it is

of maximum cardinality). A näıve complexity bound for this step is O(m2),

which follows by again observing that we can find a cyclic coalition relative

to M , if one exists, in O(m) time [228]. Satisfying a cyclic coalition involves

at least two agents improving by at least one position on their preference

lists, so the number of cyclic coalitions in the sequence must be bounded

above by m/2. Since each cyclic coalition can be satisfied in O(m) time,

this leads to an O(m2) algorithm for transforming an arbitrary maximum

matching into a maximum Pareto optimal matching.

Morrill [455] gave an O(n3) algorithm that transforms an arbitrary

matchingM in an sr instance I with n agents to a Pareto optimal matching

through a sequence of Pareto improvements. This is done using an O(n2)

algorithm to find a Pareto improvement of M (which essentially amounts

to satisfying a cyclic coalition) if one exists. Morrill’s algorithm may eas-

ily be extended to the case that I is an sri instance and M is a maximum

Pareto optimal matching in I (simply discard the agents in I who are unas-

signed after computing M). It then follows that Morrill’s approach yields

an O(m) algorithm for finding a Pareto improvement of M if one exists.

However for every matching in Morrill’s sequence of Pareto improvements,

some agent obtains her highest achievable partner (which means that nei-

ther she nor her partner can subsequently be involved in a cyclic coalition).

This implies a tighter bound of n/2 for the number of cyclic coalitions in

the sequence, and thus an O(nm) algorithm for transforming an arbitrary

maximum matching into a maximum Pareto optimal matching.

Unfortunately though, neither of the approaches described in the two

preceding paragraphs gives a better time complexity for the problem of
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finding a maximum Pareto optimal matching than is obtained by simply

constructing a minimum weight maximum cardinality matching in the un-

derlying weighted graph. Indeed, even Morrill’s algorithm for transforming

an arbitrary matching M to a Pareto optimal matching in an sr instance

I can be improved upon by this technique (simply discard the unassigned

agents in I, truncate the preference list of each assigned agent ai by deleting

every agent inferior to M(ai), and construct a minimum weight maximum

cardinality matching in the corresponding underlying weighted graph). It

remains open as to whether there is an O(
√
nm) algorithm for finding a

maximum Pareto optimal matching in I.

The above discussions do however indicate that any matching M in an

sri instance I can be transformed into a Pareto optimal matching M ′ such

that |M | = |M ′|. This implies that Theorems 6.6, 6.7 and 6.8 carry over

to the sri case. We remark that Theorem 6.6 holds even for an instance of

smi where each man finds two women acceptable, and each woman finds at

most three men acceptable. Also Theorems 6.7 and 6.8 hold because the

relevant results for maximal matchings (i.e., any two maximal matchings

differ in size by at most a factor of 2, and there are maximal matchings of

each size between the minimum and the maximum sizes) hold for general,

and not just bipartite, graphs [399, 276].

6.5.5 Coalition formation games

In Sec. 4.8.8 we introduced cfg as an extension of sri. Most of the main

results in the papers referenced in that section relate to problems associated

with computing core and strong core partitions of the agents. However

it is equally possible to define the weaker concepts of Pareto optimal and

strongly Pareto optimal partitions respectively. Whilst core and strong core

partitions guarantee the absence of a blocking or weakly blocking coalition

A′ respectively (see Sec. 4.8.8 for an informal description of these terms),

Pareto and strongly Pareto optimal partitions ensure that this is true only

for the special case that A′ is the grand coalition.

Aziz et al. [55] presented algorithmic results for deciding the existence of

Pareto optimal and strongly Pareto optimal partitions, and testing whether

a given partition is Pareto optimal or strongly Pareto optimal, in a given

cfg instance. Cechlárová et al. [124] and Cechlárová and Borbel’ová [105]

did likewise for the case that the agents within a coalition are ordered (this

case is motivated by kidney exchange as described in the final paragraph

of Sec. 4.8.8).
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6.6 Conclusions and open problems

Whilst economists have studied Pareto optimal matchings for many years,

and have long recognised their importance as a fundamental solution con-

cept in a cooperative game, it is only relatively recently that computer

scientists and others have begun to study Pareto optimal matchings from

an algorithmic point of view. As discussed in Sec. 6.2.1 and 6.2.2, Pareto

optimal matchings are closely associated with the concept of matchings in

the core of an associated housing market. The classical TTC algorithm

[527] is able to find the unique matching in the core in the hm case, and

can also be used to find a Pareto improvement of a given matching, but

only relatively recently was its efficient implementation considered [18].

Given the relative scarcity of algorithmic results concerning Pareto opti-

mal matchings, some interesting open problems remain. Perhaps the most

intriguing are the following two:

• Is there an O(
√
n1m) algorithm for finding a maximum Pareto optimal

matching in a given hat instance, where n1 is the number of applicants

and m is the number of acceptable applicant–house pairs (see Sec. 6.2.2)?

Such an algorithm may incorporate an O(m) extension of the TTC al-

gorithm to transform an arbitrary maximum matching into a maximum

Pareto optimal matching in a given hat instance.

• Similarly, is there an O(
√
nm) algorithm for finding a maximum Pareto

optimal matching in a given sri instance, where n is the number of

agents and m is the number of acceptable pairs of agents (see Sec. 6.5)?

Again, such an algorithm may incorporate an O(m) extension of the TTC

algorithm to transform an arbitrary maximum matching into a maximum

Pareto optimal matching in a given sri instance.
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Chapter 7

Popular matchings

7.1 Introduction

Popular matchings, defined in Sec. 1.5.5, have been an exciting area of

research in the last few years. The notion of a popular matching was intro-

duced by Gärdenfors [240] in 1975, who used the terms majority assignment

and strong majority assignment rather than popular matching and strongly

popular matching respectively. However, as we will see in this chapter, in

fact the concept of popularity has its roots all the way back to 1785, when

the notion of a Condorcet winner was proposed [154].

Between 1975 and 2005, there was, to the best of the author’s knowledge,

no published research on popular matchings, at least from an algorithms

and complexity standpoint. The paper of Abraham et al. [20], appearing

in Proceedings of the 10th ACM–SIAM Symposium on Discrete Algorithms

in 2005, was the first to present algorithmic results on popular matchings.

Interestingly, the notion of a popular matching was presented by Rob

Irving in December 2002 at an open problems session attended by mem-

bers of the Formal Analysis, Theory and Algorithms research group of the

School of Computing Science, University of Glasgow. There, he coined

the term “popular matching” (unaware at that time of the previous work

of Gärdenfors [240]), and posed the question as to whether there was a

polynomial-time algorithm to find a popular matching or report that none

exists, given an instance of ha.

Sitting in the audience was David Abraham, at that time a research

student in the School. He did not work on the problem immediately,

but kept it in mind and mentioned it when visiting the research group

of Kurt Mehlhorn at Max-Planck Institut für Informatik in Saarbrücken

in the spring of 2004. There, he collaborated with Kurt Mehlhorn and

333
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also Telikepalli Kavitha, at that time a postdoctoral researcher within the

group. Following a collaboration involving the four authors, the end result

was Ref. [20]. If ever there was a paper with a good example of the “book

proof” [34] for the polynomial-time solvability of a particular problem, this

is one.

The 2005 paper of Abraham et al. [20] led to a flurry of subsequent

papers exploring further aspects and extensions of popular matchings in

ha, hat and in other matching problems. In this chapter we survey struc-

tural and algorithmic results for popular matchings in a range of types of

matching problem instances, extending and updating the brief surveys on

this topic that appeared in the Encyclopedia of Algorithms [361, 450].

The remainder of this chapter is structured as follows. We consider

popular matchings in ha, cha, sri and smi in Secs. 7.2, 7.3, 7.5 and 7.6

respectively. In Sec. 7.4 we study the case where the agents have weights in-

dicating their priorities, and popularity is defined in terms of these weights.

Our main focus throughout these sections is on presenting structural

and algorithmic results concerning characterisations of popular matchings,

testing a matching for popularity and finding a popular matching or re-

porting that none exists.

Throughout this chapter we will say that an instance of a matching

problem (such as ha or sri) is solvable if it admits a popular matching,

and unsolvable otherwise. In the case where an instance is unsolvable, we

will consider matchings that have low “unpopularity”. We also give similar

results for strongly popular matchings throughout the chapter. Finally, in

Sec. 7.7, we present some concluding remarks and open problems.

7.2 House Allocation problem

7.2.1 Introduction

We begin with popular matchings in ha: recall from instance I1 shown

in Fig. 1.3 that an ha instance need not admit a popular matching. In

Sec. 7.2.2 we present a characterisation of popular matchings, leading on to

an efficient algorithm for finding a popular matching or reporting that none

exists, presented in Sec. 7.2.3. As we will see, popular matchings can have

different sizes, so in Sec. 7.2.4 we see how to find a maximum cardinality

popular matching in a solvable ha instance.

The set of popular matchings in an ha instance has some nice struc-

tural properties which are captured using the so-called switching graph. We
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Fig. 7.1 An ha instance with f(ai) and
s(ai) highlighted for each applicant ai

Fig. 7.2 The reduced graph for the ha
instance shown in Fig. 7.1

describe this graph and some algorithmic results that may be derived with

the aid of it in Sec. 7.2.5. We then move on to the case where preference

lists can include ties in Sec. 7.2.6. For an unsolvable instance of ha or hat,

we might try to find a matching that is “as popular as possible” in a precise

sense. Suitable definitions of matchings with low unpopularity are given in

Sec. 7.2.7, together with algorithmic results for computing such matchings.

We consider strongly popular matchings in ha in Sec. 7.2.8. Finally, addi-

tional results concerning popular matchings in instances of ha and hat are

presented in Sec. 7.2.9.

7.2.2 Characterising popular matchings

Abraham et al. [21] arrived at a very neat characterisation of popular

matchings in a given instance I of ha. In particular they showed that,

no matter the length of an applicant ai’s preference list, she has at most

two houses on her list to which she can be assigned in a given popular

matching in I.

To describe this characterisation, we require to adjust the definition of

instance I. That is, for each applicant ai ∈ A we create a new unique

last resort house li and append li to ai’s preference list. This ensures

that henceforth we can assume that every applicant is assigned in a given

matching in I. However in reality, (ai, li) ∈ M intuitively signifies that ai
is unassigned. Henceforth throughout Secs. 7.2-7.4, we assume that this

transformation has automatically been made for any ha or hat instance,

and that last resort houses are always included in the set of houses H .

For each applicant ai ∈ A, define f(ai) to be the first house in ai’s

preference list. Given any house hj ∈ H , define f(hj) to be the set of

applicants ai such that f(ai) = hj . Then hj is called an f -house if f(hj) 6=
∅. For a given applicant ai ∈ A, define s(ai) to be the first non f -house in
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ai’s preference list (such a house is bound to exist because of ai’s last resort

li, which appears on no other preference list). A house hj ∈ H is called an

s-house if hj = s(ai) for some ai ∈ A. By definition, the sets of f -houses

and s-houses are disjoint. Fig. 7.1 shows an example ha instance where

f(ai) and s(ai) are highlighted in the preference list of each applicant ai.

The f -houses are {h1, h2, h3} and the s-houses are {h4, h5, l3}.
Abraham et al. [21] proved an important result concerning f and s-

houses, indicating that f(ai) and s(ai) are the only candidate houses to

which an applicant ai can be assigned in a given popular matching M .

They also showed that every f -house must be assigned in M , and further-

more that these two necessary conditions are also sufficient conditions for

a matching to be popular.

Lemma 7.1 ([21]). Let I be an instance of ha and let M be a matching

in I. Then M is popular if and only if:

(i) every f -house is assigned in M ;

(ii) for each applicant ai ∈ A, M(ai) ∈ {f(ai), s(ai)}.

Lemma 7.1 leads to the definition of the reduced graph G′, which is a sub-

graph of the underlying graph G of I containing the vertices in A ∪ H

together with the edges {ai, f(ai)} and {ai, s(ai)} for each ai ∈ A. The re-

duced graph for the ha instance shown in Fig. 7.1 is illustrated in Fig. 7.2.

In the latter figure, isolated house vertices are omitted, each f -house is

labelled (f), and each s-house is labelled (s).

Given a set S ⊆ A ∪ H , define M to be S-complete if every agent in

S is assigned in M . An A-complete matching is also referred to as being

applicant-complete. These definitions imply the following restatement of

Lemma 7.1:

Theorem 7.2 ([21]). Let I be an instance of ha and let M be a matching

in I. Then M is popular if and only if:

(i) every f -house is assigned in M ;

(ii) M is an applicant-complete matching in the reduced graph G′.

Corollary 7.3 ([21]). Let I be an instance of ha and let M be a matching

in I. There is an O(m) algorithm to test whether M is popular in I, where

m is the number of acceptable applicant–house pairs in I.
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Algorithm 7.1 Algorithm Popular-HA [21]

Require: ha instance I
Ensure: return a popular matching M or “no popular matching exists”
1: G′ := reduced graph of I ;
2: if G′ admits an applicant-complete matching M then

3: for each f -house hj that is unassigned in M do

4: choose any ai ∈ f(hj);
5: M := (M\{(ai,M(ai))}) ∪ {(ai, hj)};
6: end for

7: return M ;
8: else

9: return “no popular matching exists”;
10: end if

Proof. Clearly the f -houses and s-houses in I can be identified in O(m)

time. In order to obtain an overall time complexity of O(m), it is sufficient

to add only the f -houses and s-houses to G′. Clearly Parts (i) and (ii) of

Theorem 7.2 can be verified in O(m) time. �

7.2.3 Finding a popular matching

Theorem 7.2 leads to an O(n +m) algorithm, due to Abraham et al. [21],

for finding a popular matching in I or reporting that none exists, where

n = n1+n2 is the number of applicants and houses, and m is the number of

acceptable applicant–house pairs. This method is described by Algorithm

Popular-HA in Algorithm 7.1.

This algorithm tries to construct an applicant-complete matching in

G′, given the characterisation of Theorem 7.2. Note that even if G′ admits

such a matching M , it is possible that M might leave one or more f -houses

unassigned, contrary to Part (i) of Theorem 7.2. Hence lines 3-6 of Algo-

rithm Popular-HA perform the necessary promotions of applicants as many

times as necessary in order to satisfy the required condition. Following this,

the resultant matching M is returned (note that, strictly speaking, pairs

involving last resort houses should ultimately be deleted from M , but for

brevity we will not carry out this step explicitly in this chapter).

Clearly G′ can be constructed in O(n +m) time. Using the Hopcroft–

Karp algorithm for finding a maximum matching in G′ would imply an

O(n1.5
1 ) time complexity for line 2 of Algorithm Popular-HA, since m = 2n1.

However this step can be carried out in O(n+m) time using the algorithm

shown in Algorithm 7.2. Note that in lines 5 and 8, G′ = G′\{v} refers to
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Algorithm 7.2 Finding a maximum matching in G′ [21]

Require: reduced graph G′

Ensure: return an applicant-complete matching M or “no applicant-complete
matching exists”

1: M := ∅;
2: while some house hj ∈ H has degree 1 in G′ do

3: ai := unique applicant adjacent to hj in G′;
4: M := M ∪ {(ai, hj)};
5: G′ := G′\{ai, hj};
6: end while

7: while some house hj ∈ H has degree 0 in G′ do

8: G′ := G′\{hj};
9: end while

10: if |H | < |A| then
11: return “no applicant-complete matching exists”;
12: else

13: M ′ := maximum matching in G′;
14: return M ∪M ′;
15: end if

the deletion of a vertex v, together with its incident edges, from G′. The

corresponding vertex is also removed from A or H as appropriate.

This algorithm begins by adding to M every pair (ai, hj) such that hj

has degree 1 in G′. Vertices ai, hj and their incident edges can then be

removed fromG′ as they cannot subsequently belong to an augmenting path

of M . Similarly we next delete every isolated house vertex from G′. Once

we reach line 10, every house vertex has degree at least 2 and every applicant

vertex has degree exactly 2 in G′. If |H | < |A| then G′ cannot admit an

applicant-complete matching by Theorem 1.3. Otherwise |H | ≥ |A|, which
implies that |A| = |H | and every house vertex has degree exactly 2 in G′.

That in turn implies that G′ is a disjoint collection of cycles, from which a

perfect matching M ′ can be easily found by selecting alternate edges during

a traversal of each cycle. The edges in M ′, together with the earlier edges

added to M , can then be returned as an applicant-complete matching in

G′. Clearly this step runs in O(n + m) time overall. We thus obtain the

following result.

Theorem 7.4 ([21]). Let I be an instance of ha. There is an O(n+m)

algorithm to find a popular matching I, or report that I is unsolvable, where

n is the number of applicants and houses, and m is the number of acceptable

applicant–house pairs.
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To illustrate the algorithm, the matching

M1 = {(a1, h1), (a2, h4), (a3, l3), (a4, h2), (a5, h5)}

could be constructed as an applicant-complete matching in the reduced

graph for the ha instance I ′ shown in Fig. 7.1. However h3 is an unassigned

f -house, so after promoting a5 to h3 we arrive at the following popular

matching of size 4:

M2 = {(a1, h1), (a2, h4), (a4, h2), (a5, h3)}.

To estimate the probability of a popular matching existing, Abraham

et al. [21] generated random instances of ha and measured the proportion

of these that were solvable.indexsolvability probability The experiments

constructed instances where n1 = n2 and all preference lists were of the

same length k. For given values of n1 and k, 1000 random instances were

created. For n1 = 10, k varied from 1, 2, . . . , 10 and the proportion of

solvable instances fell from 1000 (for k = 1) to 556 (for k = 10). For n1 =

100, k varied over 1, 2, . . . , 10, 20, 30, . . . , 100. The solvability proportion

decreased from 1000 (when k = 1) to 2 (when k = 10), and none of the

generated instances was solvable for k ≥ 20.

7.2.4 Maximum popular matchings

It turns out that the matching M2 illustrated at the end of the previous

subsection is not a maximum cardinality popular matching (henceforth a

maximum popular matching) in the ha instance shown in Fig. 7.1. In this

subsection we show how to find a maximum popular matching, and indeed

a popular matching of any size between the smallest and largest.

In a general solvable ha instance I, let pop−(I) and pop+(I) denote

the sizes of a minimum and maximum popular matching in I respectively.

For any k (pop−(I) ≤ k ≤ pop+(I)), we can efficiently construct a popular

matching of size k. To see this, we begin by demonstrating how to find

a minimum popular matching. Let A1 be the set of applicants ai ∈ A

satisfying s(ai) = li, and let A2 = A\A1. Now use Algorithm 7.2 on the

subgraph G′′ of G′ induced by the vertices in A2 ∪ H . If G′′ admits no

A2-complete matching then I has no popular matching by Theorem 7.2.

Otherwise let M be an A2-complete matching in G′′.

If any f -house hj where A2∩f(hj) 6= ∅ is unassigned inM , then promote

some ai ∈ A2 ∩ f(hj) to hj in M . Repeat this step until each f -house that

is unassigned in M satisfies f(hj) ⊆ A1. Now, for any f -house hj that
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is unassigned in M , add (ai, hj) to M for some ai ∈ f(hj) (by necessity

ai ∈ A1). Repeat this step until no unassigned f -houses remain. Note that

the choice of applicant ai at each step can be completely arbitrary since

f(hj1) ∩ f(hj2) = ∅ for any two f -houses hj1 and hj2 . At this point M is

a minimum popular matching in I by Theorem 7.2 (where the remaining

applicants in A1 are implicitly assigned to their last resort houses).

To obtain larger popular matchings, proceed as follows. Let G′′ now

be the subgraph of G′ obtained by deleting all the last resort houses and

their incident edges. Search for an augmenting path in G′′ relative to M .

If such a path P exists then augment M along P to obtain a matching with

one additional edge. Continuing in this way, we can arrive at a popular

matching of size k (where the remaining unassigned applicants in A1 are

simply allocated to their last resort houses). The overall time complexity is

O(n+m), since the applicants and houses involved in one alternating path

search need never be considered in a subsequent alternating path search,

as all applicants have degree at most 2. This leads to the following result.

Theorem 7.5 ([21]). Let I be a solvable instance of ha. Given any k

(pop−(I) ≤ k ≤ pop+(I)), there is an O(n+m) algorithm to find a popular

matching of size k in I, where n is the number of applicants and houses,

and m is the number of acceptable applicant–house pairs.

M = {(a1, h1), (a2, h4), (a3, h2), (a4, h5), (a5, h3)} is a maximum popu-

lar matching in the ha instance shown in Fig. 7.1. A corollary of Theorem

7.5 is that, in an instance of ha, popular matchings interpolate, i.e., there

are popular matchings of all sizes between the minimum and maximum.

7.2.5 Structure of popular matchings

McDermid and Irving [442] characterised the structure of the set of popular

matchings for an ha instance I, and gave efficient algorithms to count

and enumerate the popular matchings, and to find several kinds of optimal

popular matchings. Their characterisation was in terms of a structure called

the switching graph, which is a directed graph that is defined relative to a

popular matching M in I.

To define the switching graph, we require some additional notation that

is defined relative to M and I. Recall from Theorem 7.2 that the only pos-

sible pairs in M involving an applicant ai ∈ A are (ai, f(ai)) and (ai, s(ai)).

If (ai, f(ai)) ∈ M , define OM (ai) = s(ai), whilst if (ai, s(ai)) ∈ M , define
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Fig. 7.3 The switching graph for a given popular matching

OM (ai) = f(ai). Intuitively, OM (ai) is the “other” house that ai might be

assigned to in some other popular matching. We are now in a position to

define the switching graph.

Definition 7.6 ([442]). Let I be a solvable instance of ha and let M be

a popular matching in I. The switching graph GM of M in I is a directed

graph whose vertices are precisely the houses H. There is an arc (hj , hk)

in GM whenever hj = M(ai) and hk = OM (ai) for some applicant ai ∈ A.

In such a case ai is the label of arc (hj , hk). A component of GM is any

maximal weakly connected subgraph of GM . An applicant ai ∈ A is said to

be in a component C of GM , denoted ai ∈ C, if the arc labelled by ai is

in C.

It is clear that the switching graph of a popular matching in a given ha

instance I can be constructed in O(n + m) time, where n is the number

of applicants and houses, and m is the number of acceptable applicant–

house pairs in I. McDermid and Irving [442] remarked that Mahdian [412]

defined a similar structure to the switching graph (though only as a means

for examining the probability of a popular matching existing in a random

ha instance).

Fig. 7.3 illustrates the switching graph relative to the ha instance shown

in Fig. 7.1 and the matching

M = {(a1, h1), (a2, h4), (a3, l3), (a4, h2), (a5, h3)}.
Each arc is labelled with the applicant that represents it. Also shaded

vertices correspond to f -houses, whilst clear vertices refer to s-houses. An

example of the switching graph for a popular matching in a much larger

ha instance is given in Ref. [442].

The following useful properties of switching graphs were observed by

McDermid and Irving [442].

Lemma 7.7 ([442]). Let I be a solvable instance of ha, let M be a pop-

ular matching in I and let GM be the switching graph of M in I. Then:
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(i) each vertex in GM has out-degree at most 1;

(ii) the sink vertices in GM correspond to the houses that are unassigned

in M ; each sink vertex is an s-house;

(iii) each component of GM contains either a single sink vertex or a single

cycle.

Define a component in GM to be a tree component (respectively cycle

component) if it contains a sink vertex (respectively cycle). By Lemma 7.7,

this characterisation is well-defined. The unique cycle in a cycle component

of GM is called a switching cycle. If hk is the unique sink vertex in a tree

component C of GM , and hj is any other s-house in C, the (unique) path

from hj to hk in C is called a switching path. The switching graph in Fig. 7.3

clearly has one cycle component and one tree component, containing one

switching path.

Given a switching cycle or a switching path C in GM , the operation of

applying C to M results in the following matching:

M · C = (M\{(ai,M(ai)) : ai ∈ C}) ∪ {(ai, OM (ai)) : ai ∈ C}.

Intuitively, if an arc (hj , hk) labelled by an applicant ai is in C, then

ai moves from hj to hk when we apply C to M . In the case that C is

a switching path from hp to hq, hp is assigned in M and unassigned in

M ·C, whilst hq is unassigned in M and assigned in M ·C. McDermid and

Irving [442] proved that switching cycles and switching paths maintain the

popularity of a given matching, as follows.

Theorem 7.8 ([442]). Let I be a solvable instance of ha and let M be a

popular matching in I. Let C be a switching cycle or a switching path in

the switching graph of M in I. Then M · C is a popular matching in I.

The authors also proved that, given any two popular matchings M and M ′

in an ha instance I, M ′ can be obtained from M by successively applying

at most one switching path in each tree component of the switching graph

GM of M in I, and by either applying or not applying the switching cycle in

each cycle component of GM . This led to the following fundamental result

concerning the set of popular matchings in I.

Theorem 7.9 ([442]). Let I be a solvable instance of ha, let M be a pop-

ular matching in I and let GM be the switching graph of M in I. Suppose

that the tree components of GM are T1, . . . , Tr and the cycle components of

GM are C1, . . . , Cs. Then the set of popular matchings in I corresponds to
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precisely those matchings that are obtained by applying at most one switch-

ing path in Ti, for each i (1 ≤ i ≤ r), and by either applying or not applying

the switching cycle in Ci, for each i (1 ≤ i ≤ s).

Theorem 7.9 has a number of consequences for the problems of counting,

sampling and enumerating all popular matchings, and finding various types

of optimal popular matchings. Firstly, we obtain a nice closed-form formula

for the number of popular matchings in a given ha instance. This follows

from the observation that, in the context of the notation in Theorem 7.9,

for each cycle component of GM we have two choices: either apply or do

not apply the unique switching cycle. These choices are independent of one

another, so there are 2s possible combinations of decisions. Now suppose

that s(Ti) denotes the set of s-houses in each tree component Ti (1 ≤ i ≤ r).

One vertex in s(Ti) is the sink vertex, so there are |s(Ti)|−1 switching paths

in Ti. If we are to apply at most one switching path in Ti then there are

s(Ti) possible ways of doing this (including the choice not to apply any

switching path). Again, all the choices in the various tree components are

independent of one another (and independent of the earlier decisions in the

cycle components) and thus we have the following result.

Theorem 7.10 ([442]). Let I be a solvable instance of ha, let M be a

popular matching in I and let GM be the switching graph of M in I. Suppose

that the tree components of GM are T1, . . . , Tr and the cycle components

of GM are C1, . . . , Cs. Then the number of popular matchings in I is 2s ×
∏r

i=1 |s(Ti)|.

The switching graph illustrated in Fig. 7.3 for the ha instance I ′ of

Fig. 7.1 has one s-house other than the sink vertex in the tree component,

and given that there is one cycle component, Theorem 7.10 implies that I ′

admits 4 popular matchings.

The discussion prior to Theorem 7.10 suggests that, given a suitable

representation of the various independent decisions that we require to make

in each tree component and in each cycle component of the switching graph

(see Ref. [442] for further details), we can obtain algorithms for sampling

and enumerating the set of popular matchings.

Theorem 7.11 ([442]). Let I be an instance of ha, and let Mpop denote

the set of popular matchings in I. There is an O(n + m) algorithm for

sampling Mpop (i.e., for generating a popular matching in I uniformly at

random), where n is the number of applicants and houses, and m is the
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number of acceptable applicant–house pairs in I. Also, there is an O(n +

m+ |Mpop|) algorithm for listing all the popular matchings in I.

Define an acceptable applicant–house pair (ai, hj) to be popular if it

belongs to some popular matching. The switching graph GM for a given

popular matching M can be used to characterise the set of popular pairs in

I. McDermid and Irving [442] proved that (ai, hj) is popular if and only if

either (ai, hj) ∈ M , or (hk, hj) is an arc in GM labelled by ai, where (hk, hj)

belongs to either a switching cycle or a switching path in GM . From this,

the following result can be deduced immediately.

Theorem 7.12 ([442]). Let I be an instance of ha. The set of popular

pairs in I can be found in O(n+m) time, where n is the number of applicants

and houses, and m is the number of acceptable applicant–house pairs in I.

The switching graph can also be used to efficiently find various kinds

of optimal popular matchings: for example a minimum weight maximum

cardinality popular matching, a rank-maximal popular matching and a gen-

erous popular matching. The definitions of these matchings combine the

concept of a popular matching with that of a minimum weight maximum

cardinality matching (defined in Sec. 1.5.4), a rank-maximal matching and

a generous maximum matching (both defined in Sec. 1.5.6) respectively.

Formally (and in terms of the notation defined in Secs. 1.5.4 and 1.5.6),

let I be an ha instance I, let Mpop denote the set of popular matchings in

I, and let M+
pop denote the set of maximum popular matchings in I. For

each ai ∈ A, assume that rank(ai, li) = m + 1, where m is the number of

houses in I, regardless of the length ai’s original preference list prior to last

resorts being added.

Given an acceptable applicant–house pair (ai, hj), define wt(ai, hj) =

rank(ai, hj). Then a matching M is a minimum weight maximum cardinal-

ity popular matching if M ∈ M+
pop and wt(M) is minimum, taken over all

matchings in M+
pop. M is a rank-maximal popular matching if M ∈ Mpop

and p(M) is lexicographically maximum, taken over all matchings in Mpop.

Finally, M is a generous popular matching if M ∈ Mpop and pR(M) is lexi-

cographically minimum, taken over all matchings in Mpop (note that as M

minimises the number of (m+1)th choices, M is automatically a maximum

popular matching). McDermid and Irving proved the following results re-

garding the algorithmic complexity of computing these types of optimal

popular matchings.
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Theorem 7.13 ([442]). Let I be a solvable instance of ha. A minimum

weight maximum cardinality popular matching can be found in O(n + m)

time, and both a rank-maximal popular matching and a generous popular

matching can be found in O(n log n + m) time, where n is the number of

applicants and houses, and m is the number of acceptable applicant–house

pairs in I.

Kavitha and Nasre [367] described an alternative method for computing

minimum weight maximum cardinality popular matchings, rank-maximal

popular matchings and generous popular matchings. However the com-

plexity of their algorithm in each case is O(n2 +m), and thus slower than

McDermid and Irving’s approach.

7.2.6 Popular matchings in hat

Recall from Sec. 1.5.7 that the definition of a popular matching carries over

naturally to the extension of ha in which preference lists may include ties.

Abraham et al. [21] extended their characterisation of popular matchings

to the hat case. This characterisation is more complex than for ha and

utilises the Dulmage–Mendelsohn Decomposition of a graph (see Sec. 1.2).

This is required in order to define s(ai) for each applicant ai ∈ A: note

that in general each of f(ai) and s(ai) is now a set of size greater than 1.

The definition of f(ai) for an applicant ai ∈ A is straightforward:

it is the set of ai’s most-preferred houses (that is, f(ai) = {hj ∈ H :

rank(ai, hj) = 1}). Now define G1 to be the subgraph of the underlying

graph of I with vertex set A∪H and edge set {{ai, hj} : ai ∈ A∧hj ∈ f(ai)}.
Relative to an EOU labelling of G1 (see Definition 1.4), for each applicant

ai ∈ A, define s(ai) to be the most-preferred set of houses in ai’s preference

list that are even in G1. Note that s(ai) 6= ∅ since li is an isolated vertex in

G1 and therefore even. Also, in contrast to the ha case, it is possible that

s(ai) ⊆ f(ai).

Define a house hj ∈ H to be an f -house (respectively s-house) if hj ∈
f(ai) (respectively hj ∈ s(ai)) for some ai ∈ A. Note that, again in contrast

to the case for ha, the set of f -houses need not be disjoint from the set of

s-houses. Let H ′ denote the set of f -houses, and let H ′′ denote the union

of the sets of f -houses and s-houses.

Again, as in the ha case, the members of f(ai) ∪ s(ai) are the only

candidate houses to which an applicant ai ∈ A can be assigned in a given

popular matching. Additionally, any popular matching must be a maximum
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matching in G1. These two necessary conditions for a matching to be

popular are also sufficient, as Abraham et al. [21] proved.

Lemma 7.14 ([21]). Let I be an instance of hat and let M be a matching

in I. Then M is popular if and only if:

(i) M is a maximum matching in G1;

(ii) for each applicant ai ∈ A, M(ai) ∈ f(ai) ∪ s(ai).

As in the ha case, Lemma 7.14 leads to the definition of a reduced graph

(as before, a subgraph of the underlying graph G of I), which we again

denote by G′. The vertices in G′ are A ∪ H and the edges in G′ are

{{ai, hj} : ai ∈ A ∧ hj ∈ f(ai) ∪ s(ai)}. We can then restate Lemma 7.14

in terms of G′, as follows:

Theorem 7.15 ([21]). Let I be an instance of hat and let M be a match-

ing in I. Then M is popular if and only if:

(i) M is a maximum matching in G1;

(ii) M is an applicant-complete matching in the reduced graph G′.

Corollary 7.16. Let I be an instance of hat and let M be a matching in

I. There is an O(m) algorithm to test whether M is popular in I, where l

is the number of acceptable applicant–house pairs in I.

Proof. Clearly G1 can be built in O(m) time (assuming that we add

only the houses in H ′ to G1, rather than the whole set H). Clearly we

can test whether M is maximum in G1 in O(m) time by searching for an

augmenting path relative to M in G1.

We then find an EOU labelling of G1 relative to M , which can be

accomplished in O(m) time using a modified breadth-first search (this step

can be combined with the verification that M is maximum in G1). This

allows us to identify s(ai) for each applicant ai ∈ A in O(m) overall time.

Following this we construct the reduced graph G′, again in O(m) time

(assuming that we add only the houses in H ′′ to the vertex set, rather than

all houses in H). Clearly we can verify whether M is applicant-complete

in G′ in O(m) time. �

Theorem 7.15 leads to an O(
√
n1m) algorithm, due to Abraham et al.

[21], for finding a popular matching in I or reporting that none exists, where

n1 is the number of applicants andm is the number of acceptable applicant–



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

7.2. House Allocation problem 347

Algorithm 7.3 Algorithm Popular-HAT [21]

Require: hat instance I
Ensure: return a popular matching M or “no popular matching exists”
1: G1 := (A ∪H ′, E1), where E1 = {(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)};
2: M1 := maximum matching in G1;
3: compute an EOU labelling of G1;
4: {E , O, U are the sets of even, odd and unreachable vertices in G1 respectively}

5: G′ := (A ∪H ′′, E′), where E′ = {(ai, hj) : ai ∈ A ∧ hj ∈ f(ai) ∪ s(ai)};
6: {G′ is the reduced graph of I}
7: E′ := E′\{(ai, hj) : (ai ∈ O ∧ hj ∈ O ∪ U) ∨ (ai ∈ O ∪ U ∧ hj ∈ O)};
8: {M1 ⊆ E′ still holds at this point}
9: augment M1 to a maximum matching M in G′;

10: if M is applicant-complete in G′ then

11: return M ;
12: else

13: return “no popular matching exists”;
14: end if

house pairs. This method is described by Algorithm Popular-HAT, shown

in Algorithm 7.3.

The algorithm begins by constructing G1, and a maximum matching

M1 in G1, which can be accomplished in O(m) time and O(
√
n1m) time

respectively (see the proof of Corollary 7.16). As in the proof of Corollary

7.16, we then find an EOU labelling of G1 relative to M1 in O(m) time.

Following this we construct the reduced graph G′, again in O(m) time (see

the proof of Corollary 7.16).

The algorithm then deletes any edge in G′ connecting an odd vertex with

either an odd vertex or an unreachable vertex (which can be accomplished

in O(m) time). We then augment M1 to a maximum matching M in G′ in

O(
√
n1m) time.

Note that the edges deleted in line 7 cannot belong to any maximum

matching of G1 by Part (iii) of Theorem 1.5, and therefore cannot belong to

any popular matching in I by Theorem 7.15. Thus if M is not an applicant-

complete matching in G′, then I admits no popular matching by Theorem

7.15. On the other hand ifM is an applicant-complete matching in G′, then

the edge deletions carried out in line 7 ensure that M remains a maximum

matching in G1 (see Lemma 3.7 of Ref. [21] for further details) and hence

M is a popular matching in I by Theorem 7.15.

We thus obtain the following result.
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Theorem 7.17 ([21]). Let I be an instance of hat. There is an

O(
√
n1m) algorithm to find a popular matching I, or report that I is un-

solvable, where n1 is the number of applicants and m is the number of

acceptable applicant–house pairs.

An example execution of Algorithm Popular-HAT for a given hat in-

stance may be found in Ref. [21]. Abraham et al. also showed how to find

a maximum popular matching or report that none exists, given an instance

of hat, in O(
√
n1m) time — see Ref. [21] for further details.

The problem of finding a popular matching (assuming one exists) in a

given hat instance is at least as hard as the problem of finding a maximum

matching in a bipartite graph G = (V,E). For, if G has bipartition A ∪H

then G gives rise to an hat instance where each applicant ai ∈ A finds

acceptable the houses in H that she is adjacent to in G; moreover ai’s

preference list is a single tie involving these acceptable houses (followed by

her last resort). Clearly a popular matching in I is a maximum matching

in G and vice versa. Hence any improvement to the O(
√
n1m) algorithm

for finding a popular matching, or reporting that none exists, given an hat

instance, would imply a faster algorithm for finding a maximum matching

in a bipartite graph.

Given an instance of hat, Kavitha and Shah [371] presented an O(nω)

randomised algorithm for the problem of finding a popular matching or

reporting that none exists, where n = n1 + n2 is the number of applicants

and houses, and ω ≤ 2.3727 is the best current exponent of an algorithm

for matrix multiplication [586] (see also Ref. [550]). This algorithm is faster

than that of Abraham et al. whenever m > n1.8727.

As in the ha case, Abraham et al. [21] estimated the probability of

a popular matching existing by generating random instances of hat and

measuring the proportion of solvable instances. As before, instances where

n1 = n2 and all preference lists were of the same length k were generated.

Moreover a probability t that a given preference list entry was tied with its

successor was varied from 0 to 0.8 in steps of 0.2. For each value of n1, k

and t, 1000 random instances were generated. For n1 = 10, k varied from

1, 2, . . . , 10, whilst when n1 = 100, k varied over 1, 2, . . . , 10, 20, 30, . . . , 100.

The experiments indicated that, for fixed values of n1 and k, the solvability

proportion tended to increase as t increased. Similarly for fixed values of n1

and t, the proportion of solvable instances tended to decrease as k increased.

For example, when n1 = 100, k = 10 and t = 0.2, only 28 instances

were solvable, however this number increased to 531 when t = 0.6 (for the
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same values of n1 and k). When n1 = 100, k = 20 and t = 0.2, no instance

was solvable, however when t = 0.6 (again for the same values of n1 and

k), the number of solvable instances was 346.

7.2.7 Matchings with small unpopularity

7.2.7.1 Defining the unpopularity factor and unpopularity margin

As a given ha or hat instance need not be solvable, it is of interest to

weaken the notion of popularity, and look for matchings that are “as popular

as possible” in cases where a popular matching does not exist. To this

end, McCutchen [436] defined two versions of “near-popular” matchings

in hat instances, namely a least unpopularity factor matching and a least

unpopularity margin matching. We now define these two concepts in a given

instance I of hat.

Definition 7.18 ([436]). Let I be an instance of hat and let M denote

the set of matchings in I. Given two matchings M,M ′ ∈ M we define

∆(M,M ′) to be a measure of the factor by which M ′ is more popular than

M . That is,

∆(M,M ′) =











|P (M ′,M)|
|P (M,M ′)| , if |P (M,M ′)| > 0

1, if |P (M,M ′)| = |P (M ′,M)| = 0

∞, otherwise.

The unpopularity factor of a matching M ∈ M, denoted by u(M), is

defined as follows:

u(M) = max
M ′∈M

∆(M,M ′).

A matching M ∈ M is a least unpopularity factor matching if u(M) is

minimum, taken over all matchings in M.

Also, given two matchings M,M ′ ∈ M we define δ(M,M ′) to be a

measure of the margin by which M ′ is more popular than M . That is,

δ(M,M ′) = |P (M ′,M)| − |P (M,M ′)|.
The unpopularity margin of a matching M ∈ M, denoted by g(M), is

defined as follows:

g(M) = max
M ′∈M

δ(M,M ′).

A matching M ∈ M is a least unpopularity margin matching if g(M) is

minimum, taken over all matchings in M.
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Note that, for any M ∈ M, ∆(M,M) = 1 and δ(M,M) = 0, and hence

u(M) ≥ 1 and g(M) ≥ 0. Also M is popular if and only if u(M) = 1, and

similarly M is popular if and only if g(M) = 0. Furthermore, given any

M ′ ∈ M, observe that ∆(M,M ′) = ∞ if and only if |P (M,M ′)| = 0 and

|P (M ′,M)| > 0. Thus u(M) is finite if and only if M is Pareto optimal.

McCutchen [436] proved that if u(M) is finite, then u(M) is equal to

the maximum k for which there exists an alternating path

P = 〈hi1 , ai1 , hi2 , ai2 , . . . , hir , air , hir+1
, air+1

〉

relative to M in the underlying graph of I, where:

(1) r ≥ k;

(2) for each j (1 ≤ j ≤ r + 1), (aij , hij ) ∈ M ;

(3) for each j (1 ≤ j ≤ r), aij prefers hij+1
to hij or is indifferent between

them;

(4) there exists some 1 ≤ s1 < s2 < · · · < sk ≤ r such that, for each j

(1 ≤ j ≤ k), aisj prefers hisj+1
to hisj

.

Intuitively, the matching M ′ = M ⊕ P will promote k applicants (namely

ais1 , . . . , aisk ) and demote one applicant to her last resort (namely air+1
),

leaving the remaining applicants in P indifferent between M and M ′. Thus

∆(M,M ′) = k. McCutchen [436] defined hir+1
to have pressure k, intu-

itively meaning that r ≥ k applicants are stacked up behind air+1
, waiting

for her to vacate hir+1
so that k of them can be promoted. Thus if M

is Pareto optimal, u(M) is equal to the maximum pressure of an assigned

house in M .

A consequence of the discussion in the preceding paragraph is that if

u(M) is finite then u(M) is integral. Hence if I is an hat instance that

admits a popular matching M then u(M) = 1, otherwise any matching M

in I satisfies u(M) ≥ 2.

To give an example of the unpopularity factor and the unpopularity

margin of a matching, in the ha instance I ′ of Fig. 7.1, it may be verified

that the matching

M = {(a1, l1), (a2, h4), (a3, h1), (a4, h2), (a5, h3)}

is Pareto optimal. House h2 has pressure 3 due to the alternating path

〈l1, a1, h4, a2, h1, a3, h2, a4〉. Clearly the maximum pressure of any assigned

house must be 3 as two applicants have their first choice in M . Hence

u(M) = 3.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

7.2. House Allocation problem 351

Similarly g(M) = 2, which may be deduced by considering the matching

M ′ = {(a1, h4), (a2, h1), (a3, h2), (a4, l4), (a5, h3)}.
Clearly |P (M ′,M)| = 3 and |P (M,M ′)| = 1, so g(M) ≥ 2. However since

two applicants have their first choice in M , it is clear that |P (M ′′,M | ≤ 3

for any matching M ′′ in I ′. Moreover if |P (M ′′,M)| = 3 then a3 moves into

h2, which is only possible if a4 is demoted from h2, hence |P (M,M ′′)| ≥ 1.

Thus g(M) = 2.

7.2.7.2 Finding the unpopularity factor and unpopularity margin

McCutchen [436] gave polynomial-time algorithms for computing the un-

popularity factor and the unpopularity margin of a given matching M in

an instance I of hat. We describe slightly modified versions here with

improved time complexity.

Firstly, we show how to find u(M). The initial step is to test whether

M is Pareto optimal — this step can be accomplished in O(m) time by

Proposition 6.13, where m is the number of acceptable applicant–house

pairs in I. If M is not Pareto optimal then u(M) = ∞. Now suppose that

M is Pareto optimal.

Build a weighted directed graph D with a vertex for each house that

is assigned in M . There is an arc (hi, hj) of weight 1 if M(hi) prefers

hj to hi, and an arc (hi, hj) of weight 0 if M(hi) is indifferent between

hj to hi. Every cycle in D must have weight 0, otherwise M is not Pareto

optimal. Moreover, any arc (hi, hj) where hi and hj are in the same strongly

connected component of D must have weight 0, as hi and hj are contained

in some cycle in D.

These observations suggest the following approach. Construct the

strongly connected components of D in O(m) time [561]. Let these be

C1, . . . , Cr for some r ≥ 1. Now create (in O(m) time) a new weighted

directed graph D′ which contains a vertex vi for each strongly connected

component Ci in D, and an arc (vi, vj) whenever D contains an arc from a

vertex in Ci to a vertex in Cj . If there is such an arc in D with weight 1,

then the weight of (vi, vj) in D′ is 1, otherwise the weight of (vi, vj) in D′

is 0.

Clearly D′ is a directed acyclic graph. The problem of finding a longest

path in D′ can be solved in O(m) time using topological ordering (see e.g.,

Ref. [533, p.491]). It may be verified that the length of this longest path is

then u(M) (as it gives the maximum pressure of an assigned house).

We summarise this discussion as follows.
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a1 : h1 h2 . . . hr l1
a2 : h1 h2 . . . hr l2

. . .
ar : h1 h2 . . . hr lr

Fig. 7.4 An instance of ha

Proposition 7.19. Given an instance I of hat and a matching M in I,

the unpopularity factor u(M) of M may be computed in O(m) time, where

m is the number of acceptable applicant–house pairs in I.

McCutchen’s algorithm for computing u(M) [436] has O(
√
n1m) complex-

ity, where n1 is the number of applicants in I.

We now turn to the problem of computing the unpopularity margin

g(M) for a given matchingM . The technique is somewhat simpler than that

used for the computation of u(M), though the time complexity is super-

linear. The method involves applying weights to the underlying graph G

of I. An edge (ai, hj) of G has weight -1 if ai prefers hj to M(ai); (ai, hj)

has weight 0 if ai is indifferent between hj and M(ai), or if M(ai) = hj ;

and (ai, hj) has weight 1 if ai prefers M(ai) to hj .

It may be verified that g(M) is equal to the weight of a minimum

weight applicant-complete matching M ′ in this weighted graph. M ′ may

be computed in O(
√
n1m logn1) time (see Sec. 1.5.4). We thus have the

following result.

Proposition 7.20. Given an instance I of hat and a matching M in I,

the unpopularity margin g(M) may be computed in O(
√
n1m logn1) time,

where n1 is the number of applicants and m is the number of acceptable

applicant–house pairs in I.

McCutchen’s approach for computing g(M) [436] has O(
√
nm(g+1)) com-

plexity, where n is the number of applicants and houses in I, and g = g(M).

7.2.7.3 Least unpopularity factor and least unpopularity margin

matchings

We now turn to the problems of computing matchings with small unpopu-

larity factor and unpopularity margin. Given a Pareto optimal matchingM ,

the maximum pressure of any house is clearly n1−1, where n1 is the number

of applicants. This implies that u(M) ≤ n1 − 1 (recall that u(M) = ∞ if

M is not Pareto optimal). However there is an ha instance I where a least



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

7.2. House Allocation problem 353

unpopularity factor matching M ′ satisfies u(M ′) = n1−1. To see this, con-

sider the ha instance I ′ illustrated in Fig. 7.4 (a generalisation of instance

I1 shown in Fig. 1.3), which is defined for any r ≥ 2. Clearly the unique

Pareto optimal matching up to symmetry is M ′ = {(ai, hi) : 1 ≤ i ≤ r}.
However h1 has pressure r − 1 = n1 − 1, so u(M ′) = n1 − 1.

Similarly, if a matching M is Pareto optimal and M ′′ is any other

matching where |P (M ′′,M)| > 0, the inequality |P (M,M ′′)| > 0 must

also hold. Since |P (M ′′,M)| ≤ n1, it follows that g(M) ≤ n1 − 1. Again

the Pareto optimal matching M ′ described in the preceding paragraph sat-

isfies g(M ′) = n1 − 1 (and M ′ is a least unpopularity margin matching).

A trivial upper bound for g(M) for a matching M that is not Pareto op-

timal is g(M) ≤ n1. A matching that achieves this upper bound in I ′ is

{(ai, li) : 1 ≤ i ≤ n1}.
McCutchen [436] considered the algorithmic complexity of each of the

problems of computing a least unpopularity factor matching and a least

unpopularity margin matching and proved the following hardness results,

which hold even in the absence of ties.

Theorem 7.21 ([436]). Given an instance I of ha, the problem of find-

ing a least unpopularity factor matching is NP-hard. In particular, the

problem of deciding whether I admits a matching M such that u(M) = 2

is NP-complete. Hence there is no approximation algorithm for the prob-

lem of finding a least unpopularity factor matching in I with performance

guarantee 3/2− ε, for any ε > 0, unless P=NP.

Theorem 7.22 ([436]). Given an instance I of ha, the problem of finding

a least unpopularity margin matching is NP-hard.

Huang et al. [299] gave an algorithm that aims to find matchings with

low unpopularity factor and unpopularity margin, given an instance of hat.

In particular, they proved the following.

Theorem 7.23 ([299]). Let I be an instance of hat and let k ≥ 2 be

a given integer. Then a sequence of bipartite graphs H2, . . . , Hk may be

constructed in O(k
√
n1m) overall time, where n1 is the number of applicants

and m is the number of acceptable applicant–house pairs, with the following

properties: if Hk admits an applicant-complete matching Mk, then u(Mk) ≤
k − 1 and g(Mk) ≤ n1

(

1− 2
k

)

.

A trivial adaptation to the algorithm of Huang et al. [299] will guarantee

that the series is bound to terminate in a polynomial number of steps with
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a matching that satisfies the two given inequalities. For, suppose that

k = 2n1 and Hk does not admit an applicant-complete matching. In this

case, simply output an arbitrary Pareto optimal matching M in I (which

may be found in O(m) time by Proposition 6.14). Then as observed above,

the Pareto optimality of M implies that u(M) ≤ n1 − 1 ≤ k − 1 and

g(M) ≤ n1 − 1 = n1

(

1− 2
k

)

.

Huang et al. [299] proved that, for a random hat instance with n1

applicants and n2 = n1 houses, where each preference list is a permutation

of the n1 houses generated uniformly at random, the expected number of

iterations taken by their algorithm (i.e., the expected number of bipartite

graphs generated until we arrive at an applicant-complete matching) is at

most lnn1 + 1.

The authors also implemented their algorithm and carried out an empir-

ical analysis based on randomly generated instances of hat and measured

the number of iterations of the algorithm that were required for each in-

stance. Instances where n1 = n2 = 100 and n1 = n2 = 500 were considered.

For each value of n1, instances where all preference lists were of the same

length k were constructed. Also a probability t of an entry being tied with

its predecessor was used. For each value of n1, k and t, 1000 instances were

created. For every instance generated, the algorithm terminated within 4

iterations, i.e., it constructed a matching M with u(M) ≤ 5.

Huang et al. [299] also generated highly correlated instances of hat

(where each applicant’s preference list is derived from a master list of the

houses). Fig. 7.4 gives an example of such an instance. In the authors’

experimental trials, applicants chose uniformly at random a subset of size

n2p of the houses, where p is a density parameter that was varied. For such

instances the number of iterations taken was considerably larger in some

cases, in comparison with the trials described in the previous paragraph.

An empirical analysis of the algorithm of Huang et al. [299] was

also conducted by Michail [452]: he compared the unpopularity factors

of its constructed matchings with those of algorithms to compute rank-

maximal matchings. The (surprising) results are described in more detail

in Sec. 8.2.2.4.

7.2.8 Strongly popular matchings

Recall the definition of a strongly popular matching from Sec. 1.5.5. It

turns out that there is a straightforward necessary and sufficient condition

for an hat instance I to admit a strongly popular matching. This is based

on the graph G1 that was defined in Sec. 7.2.6.
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Proposition 7.24. Let I be an instance of hat. A matching M in I is

strongly popular if and only if M is the unique perfect matching in G1.

Proof. Suppose that I admits a strongly popular matching M . Firstly,

we claim that M is a perfect matching in G1. For, suppose that M(ai) /∈
f(ai) for some ai ∈ A. Choose an arbitrary hj ∈ f(ai). If hj is unassigned

in M , clearly (M\{(ai,M(ai))}) ∪ {(ai, hj)} is more popular than M , a

contradiction. Hence let ak = M(hj). Now let

M ′ = (M\{(ai,M(ai)), (ak, hj)}) ∪ {(ai, hj), (ak, lk)}.

Then |P (M ′,M)| = |P (M,M ′)| = 1, a contradiction. Thus M is a perfect

matching in G1. If M ′′ is some other perfect matching in G1 then clearly

|P (M ′′,M)| = |P (M,M ′′)| = 0, a contradiction. Hence M is the unique

perfect matching in G1.

Conversely suppose that M is the unique perfect matching in G1. If

M is not strongly popular then there exists some matching M ′ 6= M such

that |P (M ′,M)| ≥ |P (M,M ′)|. Now |P (M ′,M)| = 0, since every agent

ai ∈ A satisfies M(ai) ∈ f(ai). Hence |P (M,M ′)| = 0, which implies that

M ′ is also a perfect matching in G1, a contradiction. Hence M is strongly

popular in I. �

It follows by Proposition 7.24 that it is easy to test a matching for strong

popularity in I (and indeed trivial if I is an instance of ha).

Proposition 7.25. Let I be an instance of hat and let M be a matching in

I. There is an O(m) algorithm to test whether M is strongly popular, where

m is the number of acceptable applicant–house pairs. This bound improves

to O(n1) if I is an instance of ha, where n1 is the number of applicants

in I.

Proof. If I is an instance of ha, the result follows easily. Hence suppose

that I is a general hat instance. Clearly G1 can be constructed in O(m)

time, and we can check that M is a perfect matching in G1 within the same

time bound. A straightforward variant of breadth-first search, also taking

O(m) time, can be used to check for an alternating cycle in G1 with respect

to M . �

Finding a strongly popular matching or reporting that none exists is also

straightforward.
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Proposition 7.26. Let I be an instance of hat and let M be a matching

in I. There is an O(
√
n1m) algorithm to find a strongly popular matching

in I or report that none exists, where n1 is the number of applicants and

m is the number of acceptable applicant–house pairs. This bound improves

to O(n1) if I is an instance of ha.

Proof. If I is an instance of ha, the result follows easily. Hence suppose

that I is a general hat instance. Clearly G1 can be constructed in O(m)

time, and we can find a maximum matching M in G1 in O(
√
n1m) time.

If M is not a perfect matching in G1 then we report that no strongly

popular matching exists. Otherwise, as in the proof of Proposition 7.25,

we determine whether M admits an alternating cycle in G1 in O(m) time.

If so, we report that no strongly popular matching exists, otherwise M is

strongly popular. �

7.2.9 Further results for popular matchings in ha and hat

In this subsection we review further results in the literature concerning

popular matchings in instances of ha and hat.

Voting paths Abraham and Kavitha [25] studied a dynamic version of

hat, viewed as a matching market, where applicants and houses are allowed

to enter and leave the market, and applicants can arbitrarily change their

preference lists. In this case, a previously computed matching M that was

popular prior to changes of this nature occurring may no longer be popular.

Abraham and Kavitha argued that one cannot simply recompute a popular

matching M ′ in the new instance and expect the applicants to agree to

the switch from M to M ′, because unless M ′ ◮ M , there will not be a

majority consensus to move directly from M to M ′ (recall that ◮ is the

“more popular than” relation from Sec. 1.5.5).

However, the authors argued that the applicants will agree to move from

M to M ′ by consensus if there exists a sequence 〈M = M0,M1, . . . ,Mk =

M ′〉, for some k ≥ 0, where Mi+1 ◮ Mi for each i (0 ≤ i ≤ k).

Such a sequence is called a length-k voting path from M to a popular

matching.

By way of illustration, Abraham and Kavitha [25] gave an example

ha instance that admits two popular matchings M ′ and M ′′, and they

also gave an example matching M that is not popular. They showed that

neither M ′ ◮ M nor M ′′ ◮ M holds, yet there is a matching M1 such that
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M ′ = M2 ◮ M1 ◮ M0 = M . Thus M has a length-2 voting path to a

popular matching, but not a length-0 or a length-1 voting path.

In general the problem then is to determine whether there is a length-k

voting path from some matching M to a popular matching, for some k ≥ 1,

and if so, to determine the minimum value of k for which this is the case.

Of course, what makes this problem non-trivial is that the relation ◮ is not

transitive in general.

Surprisingly, Abraham and Kavitha [25] showed that every matching in

an hat instance I admits a length-k voting path to a popular matching

for some k where 0 ≤ k ≤ 2. Moreover, they gave an O(
√
nm) algorithm

to compute such a voting path, where n is the number of applicants and

houses, and m is the number of acceptable applicant–house pairs. The

complexity of their algorithm reduces to O(n+m) in the case that I is an

instance of ha.

Abraham and Kavitha’s results can be regarded as an analogue of the

“paths to stability” results for smi presented in Sec. 2.6. This earlier sec-

tion dealt with decentralised algorithms for arriving at a stable matching,

starting from an arbitrary matching, via a process of successively satisfying

blocking pairs. In this context, the aim is to arrive at a popular match-

ing, starting from an arbitrary matching, by successively gaining agreement

from a majority of the applicants to change the current matching.

Existence of popular matchings As mentioned in Sec. 7.2.3 and

Sec. 7.2.6, Abraham et al. [21] carried out an empirical evaluation with the

aim of estimating the likelihood of a popular matching existing in random

instances of ha and hat. Mahdian [412] conducted a theoretical investiga-

tion into the same problem. He showed that, for random instances of ha,

popular matchings exist with high probability when the number of houses

is at least a factor of α larger than the number of applicants, where α is

the solution of x2e−1/x = 1 (α ≈ 1.42).

Popular mixed matchings Kavitha et al. [366] studied the concept of

a popular mixed matching, which is a probability distribution over match-

ings that is popular in a precise sense. Towards a definition of this

concept, let I be an instance of hat and let M be the set of match-

ings in I. A mixed matching is a set of matching–probability pairs

M = {(M1, p1), . . . , (Mk, pk)} where Mi ∈ M (1 ≤ i ≤ k), pi ≥ 0 and
∑k

i=1 pi = 1. Thus M is a probability distribution over matchings in
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M. A “standard” matching M ∈ M corresponds to the mixed matching

M = {(M, 1)}.
Recall that |P (M,M ′)| is the number of applicants who preferM to M ′,

given two matchings M,M ′ ∈ M. We can generalise this quantity to mixed

matchings as follows: for two mixed matchings M,M′ in I, where M =

{(M1, p1), . . . , (Mk, pk)} and M
′ = {(M ′

1, q1), . . . , (M
′
k, ql)}, the expected

number of applicants who prefer M to M
′, denoted φ(M,M′), is defined as

follows:

φ(M,M′) =

k
∑

i=1

l
∑

j=1

piqjP (Mi,M
′
j).

We can then extend the “more popular than” relation◮ to mixed matchings

as follows: M
′ is more popular than M, denoted M

′ ◮ M, if φ(M′,M) >

φ(M,M′). M is popular if it is ◮-maximal (i.e., there is no other mixed

matching M
′ such that M′ ◮ M).

Kavitha et al. [366] showed that every instance I of hat admits a pop-

ular mixed matching, and they gave a polynomial-time algorithm based on

linear programming for computing such a matching in I.

Self-stabilising algorithm Shi [529] gave a self-stabilising algorithm1

for the problem of finding a maximum popular matching or reporting that

none exists, given an instance I of ha. The algorithm stabilises in O(n5)

moves given any scheduler, where n is the number of applicants and houses

in I.

Condorcet’s voting paradox The potential absence of a popular

matching in a given ha instance can be related all the way back to the

observation of Condorcet [154] that, given k voters who each rank n candi-

dates in strict order of preference, there may not exist a “winner”, namely

a candidate who beats all others in a pairwise majority vote.

For example, suppose the “voters” are a1, a2 and a3, the “candidates”

are h1, h2 and h3, and each voter has the preference list shown in Fig. 7.5.

Then if, for example, h1 is declared the winner, a majority of voters, namely

a2 and a3, would vote for an alternative, namely h3. A similar argument

holds if either h2 or h3 is declared as winner, and hence there is no outright

winner under a pairwise majority voting rule. This phenomenon is referred

to as Condorcet’s voting paradox [154] because the collective preferences

1See Ref. [169] for an introduction to self-stabilising algorithms.
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a1 : h1 h2 h3

a2 : h2 h3 h1

a3 : h3 h1 h2

Fig. 7.5 An instance of ha

of the voters are cyclic (since h3 is preferred to h1 by a majority; h2 is

preferred to h3 by a majority; and h1 is preferred to h2 by a majority) even

though the individual preference list of each voter is strict and transitive.

In general, given an hat instance I, we can extend the notation

P (M,M ′) to the case that M and M ′ are assignments in I that assign

each applicant to the same house. One such assignment M is then called a

weak Condorcet winner [154] if for every other assignment M ′ that assigns

every applicant to the same house, |P (M,M ′)| ≥ |P (M ′,M)|. M is a strong

Condorcet winner [154] if for every other assignment M ′ that assigns every

applicant to the same house, |P (M,M ′)| > |P (M ′,M)|. Thus it follows

that the ha instance shown in Fig. 7.5 has no weak Condorcet winner that

assigns every applicant to the same house. It is then clear that the notions

of popular and strongly popular matchings are the analogues of weak and

strong Condorcet winners in the case that matchings in I are considered.

Various papers [136, 137, 135, 575] focus on the problems of finding weak

and strong Condorcet winners for specific preference models.

7.3 Capacitated House Allocation problem

7.3.1 Introduction

In this section we generalise some of the results from the previous section

to the capacitated case, both with and without ties. Thus our focus is on

instances of cha, dealt with in Sec. 7.3.2, and chat, considered in Sec. 7.3.3.

We also survey additional results concerning variants of chat that typically

involve choosing house capacities so as to arrive either at a solvable instance

of chat, or to ensure that the weight of a popular matching (assuming that

the houses have weights) is minimised. These problems are considered in

Secs. 7.3.3 and 7.3.4.

7.3.2 Strictly-ordered preference lists

As indicated in Sec. 1.5.7, popular matchings can be defined in instances

of cha and chat, where each house hj has a capacity cj > 0. Manlove
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and Sng [425] studied popular matchings in these more general problem

contexts. In each of the cha and chat cases, they gave necessary and

sufficient conditions for a matching to be popular, leading to a polynomial-

time algorithm for finding a popular matching or reporting that none exists.

As in the 1–1 case, the equivalent conditions for popularity hinge on the

definitions of f(ai) and s(ai) for each applicant ai ∈ A. As before, we

assume that a unique last resort house li with capacity 1 is appended to

the preference list of each applicant ai ∈ A.

Starting with the cha case, define f(ai) and f(hj) as in the ha case

(see Sec. 7.2.2), for any ai ∈ A and hj ∈ H . For any house hj ∈ H , define

fj = |f(hj)|; hj is called an f -house if fj > 0. For any ai ∈ A, we then

define s(ai) to be the most-preferred house hj on ai’s preference list such

that either (i) fj = 0, or (ii) 0 < fj < cj and hj 6= f(ai) (such a house is

guaranteed to exist due to li). A house hj ∈ H is an s-house if hj = s(ai)

for some ai ∈ A. Clearly s(ai) 6= f(ai) for each applicant ai ∈ A, but in

general the set of s-houses need not be disjoint from the set of f -houses.

The reduced graph G′ may be defined in an analogous way to the ha case

(see Sec. 7.2.2), though note that G′ is now a capacitated bipartite graph,

with the capacity of each house hj being cj .

Manlove and Sng [425] established the following characterisation of pop-

ular matchings in cha.

Theorem 7.27 ([425]). Let I be an instance of cha and let M be a

matching in I. Then M is popular if and only if:

(i) for every f -house hj ∈ H,

(a) if fj ≤ cj then f(hj) ⊆ M(hj);

(b) if fj > cj then |M(hj)| = cj and M(hj) ⊆ f(hj);

(ii) M is an applicant-complete matching in the reduced graph G′.

Theorem 7.27 is clearly equivalent to Theorem 7.2 in the case that I is an

instance of ha. Theorem 7.27 led the authors to an efficient algorithm for

computing a maximum popular matching (or reporting that none exists).

Theorem 7.28 ([425]). Let I be an instance of cha. There is an

O(n1.5
1 + m) algorithm2 to find a maximum popular matching in I, or

2In Ref. [425], the weaker upper bound of O(
√
Cn1 +m) was given as the complexity

for this algorithm, where C is the total capacity of the houses. The improved upper
bound follows by the remark in Footnote 6 on Page 16.
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report that I is unsolvable, where n1 is the number of applicants and m

is the number of acceptable applicant–house pairs.

7.3.3 Preference lists with ties

We now turn to case that I is an instance of chat. We define f(ai), for

any ai ∈ A, as in the hat case (see Sec. 7.2.6). The definition of G1 is

analogous to the hat case, though note that G1 is now a capacitated bi-

partite graph, with the capacity of each house hj being cj . Manlove and Sng

[425] proved that a popular matching in I must be a maximum matching

in G1.

Crucial to the definition of s(ai) is the extension of the Dulmage–

Mendelsohn Decomposition (Theorem 1.4) to the capacitated bipartite

graph case, and in particular to the capacitated graph G1. Manlove and

Sng [425] showed that one can indeed arrive at such an extension. One way

to deduce this is to “clone” each house hj with capacity cj in G1 into cj
multiple copies h1

j , . . . , h
cj
j in the “cloned graph” C(G1), whose vertex set

also includes the applicants in A, and whose edge set includes the edges

(ai, h
k
j ), for 1 ≤ k ≤ cj , whenever (ai, hj) is an edge of G1. The authors

showed that in the EOU labelling L of the unit-capacity graph C(G1), any

two “clones” of the same house hj have the same EOU label. Thus L gives

rise to a well-defined EOU labelling of G1.

On the basis of this observation, we can define s(ai), for any ai ∈
A, as in Sec. 7.2.6: that is, s(ai) is the most-preferred set of houses in

ai’s preference list that are even in G1. As in the hat case, it need not

follow that f(ai) ∩ s(ai) = ∅. The reduced graph G′ may be defined in

an analogous way to the hat case (see Sec. 7.2.6), though note that G′

is now a capacitated bipartite graph, with the capacity of each house hj

being cj .

Manlove and Sng [425] established the following characterisation of pop-

ular matchings in chat.

Theorem 7.29 ([425]). Let I be an instance of chat and let M be a

matching in I. Then M is popular if and only if:

(i) M is a maximum matching in G1;

(ii) M is an applicant-complete matching in the reduced graph G′.

Again, it is clear that Theorem 7.29 reduces to Theorem 7.15 in the case

that I is an instance of ha. Theorem 7.29 led to the following algorithmic
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result for computing maximum popular matchings (or reporting that none

exists), given an instance of chat.

Theorem 7.30 ([425]). Let I be an instance of chat. There is an

O(n1m) algorithm3 to find a maximum popular matching in I, or report

that I is unsolvable, where n1 is the number of applicants and m is the

number of acceptable applicant–house pairs.

Recently Paluch [473] considered the many–many extension of chat in

which both applicants and houses can be multiply assigned (up to some

given capacity, which is now specified for all agents). She characterised

popular matchings in this setting and proved a range of algorithmic results

for problems involving finding a popular matching or reporting that none

exists.

7.3.4 Variable house capacities

Kavitha and Nasre [369] considered an interesting problem concerning pop-

ular matchings in chat. Suppose we are given an hat instance I that ad-

mits no popular matching. Intuitively, this is because a subset of the houses

H ′ are desirable for a set of applicants A′ whose cardinality exceeds that of

H ′. Kavitha and Nasre suggested that we regard I as an instance of chat

(initially with all houses having unit capacity) and then attempt to increase

the capacities of certain houses in the hope that a popular matching might

then exist.

For example, we have already seen that the ha instance I1 shown in

Fig. 1.3 admits no popular matching. However if we regard I1 as an

instance of cha, setting c1 = 2 and c2 = c3 = 1, then the matching

M = {(a1, h1), (a2, h1), (a3, h2)} is popular. In general, a trivial way to en-

sure that a popular matching always exists is to let cj = max{fj, 1}, where
fj is defined in Sec. 7.3.2. However this may be infeasible if each house has

a limit on the extent to which its capacity may be increased.

These observations led Kavitha and Nasre [369] to define the following

decision problem:

3In Ref. [425], the weaker upper bound of O((
√
C+n1)m) was given as the complexity

for this algorithm, where C is the total capacity of the houses. The improved upper
bound follows by the remark in Footnote 6 on Page 16.
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Name: pop chat var caps-1

Instance: an instance I of hat, with a bound bj ∈ Z
+ for each

house hj ∈ H 4

Question: is there a solvable instance J of chat whose applicants,

houses and preference lists are derived from I, where the

capacity cj of each house hj ∈ H satisfies 1 ≤ cj ≤ bj?

A special case of pop chat var caps-1 is the following:

Name: pop chat (1,2) caps

Instance: an instance I of hat, with a subset H ′ ⊆ H 5

Question: is there a solvable instance J of chat whose applicants,

houses and preference lists are derived from I, where

cj = 1 for each hj ∈ H\H ′, and cj ∈ {1, 2} for each

hj ∈ H ′?

Thus in the pop chat (1,2) caps problem, we are given a subset H ′ of

houses, any of whose capacities could be raised to 2, whilst the remaining

houses must have capacity 1. It is tempting to believe that, to maximise

the chance of a popular matching existing, we should automatically increase

the capacity of all houses in H ′ to 2. However Kavitha and Nasre [369] gave

an example to show that giving each house its maximum possible capacity

does not always help to ensure that a popular matching exists. Specifically,

they gave a solvable cha instance where each house has capacity 1, but

if we raise the capacity of every house to 2 then the instance is no longer

solvable.

Kavitha and Nasre [369] proved the following algorithmic results for

pop chat (1,2) caps.

Theorem 7.31 ([369]). pop chat (1,2) caps is NP-complete. The

result holds even in the following separate cases:

(i) each applicant ai ∈ A has a unique first choice, at most two (tied)

second choices, and no house of rank > 2 (apart from li);

(ii) each applicant ai ∈ A has a strictly-ordered preference list Li of length

at most 3 (excluding li), where Li is derived from a master list L of

all houses in H.

4Assume that bj = 1 for each last resort house hj in H.
5Assume that no last resort house belongs to H′.
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Theorem 7.32 ([369]). pop chat (1,2) caps is solvable in polynomial

time if each applicant ai ∈ A has a set of tied first choices (of any positive

size), a unique second choice, and no house of rank > 2 (apart from li). If

the answer is “yes”, the algorithm constructs a chat instance J with the

desired properties, together with a popular matching in J .

The authors also considered the following variant of pop chat var

caps-1, in which the total capacity of the houses (rather than each indi-

vidual house’s capacity) is bounded:

Name: pop chat var caps-2

Instance: an instance I of hat, and an integer K ∈ Z
+

Question: is there a solvable instance J of chat whose applicants,

houses and preference lists are derived from I, where
∑

hj∈H cj ≤ K? 6

They showed that, in constrast to pop chat var caps-1, this problem

is solvable in polynomial time.

Theorem 7.33 ([369]). pop chat var caps-2 is solvable in polynomial

time. If the answer is “yes”, the algorithm constructs a chat instance J

with the desired properties, together with a popular matching in J .

7.3.5 Popularity at minimum cost

Kavitha et al. [370] studied three problems that are somewhat related to

those detailed in the previous subsection, but differ in that they involve

weights on the houses.

The first problem is similar to pop chat var caps-1 in that we are

given an hat instance (which can be regarded as a chat instance with

unit house capacities), and the task is to augment the house capacities in

such a way that we obtain a solvable instance. However, rather than the

house capacities being bounded, we now have a weight wt(hj) ≥ 0 for each

hj ∈ H . For each additional unit (above 1) by which we raise the capacity

of hj , we must “pay” a contribution of wt(hj). The task is to determine

how to augment the house capacities to obtain a solvable instance so that

the overall payment is minimum.

We now give a formal definition of this problem.

6Assume that cj = 1 for each last resort house hj in H.
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Name: pop chat var caps-3

Instance: an instance I of hat, and a weight wt(hj) for each house

hj ∈ H

Solution: a solvable instance J of chat whose applicants, houses

and preference lists are derived from I, such that
∑

hj∈H(cj − 1)wt(hj) is minimum. 7

Kavitha et al. [370] proved the following algorithmic results for

pop chat var caps-3.

Theorem 7.34 ([370]). pop chat var caps-3 is solvable in O(n2
1) time

if each applicant’s preference list is strictly ordered and of length at most

2 (excluding last resort houses), where n1 is the number of applicants. By

contrast, pop chat var caps-3 is NP-hard even if each applicant’s pref-

erence list is strictly ordered and of length at most 3 (again excluding last

resorts). The result holds even if each applicant’s list is derived from a

single master list of the houses. In the latter case it is also NP-hard to

approximate pop chat var caps-3 within a factor of
√
n1/2.

The second problem is similar to pop chat var caps-3. Here we as-

sume that we are given an hat instance I, together with a weightwt(hj) ≥ 0

for each house. The problem is to choose a capacity cj ≥ 0 for each house

hj ∈ H in order to obtain a solvable chat instance J . Note that the case

cj = 0 is permitted. The capacities must be chosen so that
∑

hj∈H cjwt(hj)

is minimum. A degenerate solution to this problem is simply to set cj = 0

for each hj ∈ H , in which case the empty matching is trivially popular

in J . To prevent this possibility, the authors insist that J must admit an

applicant-complete popular matching. This is always possible, for example

by setting cj = max{fj, 1} for each hj ∈ H , but of course such a solution

may have a large total weight.

We now define the second problem formally.

Name: pop chat var caps-4

Instance: an instance I of hat, and a weight wt(hj) for each house

hj ∈ H

Solution: an instance J of chat whose applicants, houses

and preference lists are derived from I, where each

house hj has capacity cj ≥ 0 in J ,8 such that J

admits an applicant-complete popular matching and
∑

hj∈H cjwt(hj) is minimum.

7See Footnote 6.
8See Footnote 6.
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Kavitha et al. [370] proved the following algorithmic results for

pop chat var caps-4.

Theorem 7.35 ([370]). pop chat var caps-4 is NP-hard even if each

applicant’s preference list is strictly ordered and of length at most 2 (ex-

cluding last resort houses). The result holds even if each applicant’s list is

derived from a single master list of the houses.

We refer to the third problem that the authors consider as pop chat

min weight, and define it as follows. We are given given a chat instance

I in which each house hj ∈ H has a weight wt(hj) ≥ 0, and the problem is

to find a popular matching M in I such that wt(M) =
∑

(ai,hj)∈M wt(hj)

is minimum, or report that no popular matching exists. Note that (i) we

assume that wt(li) = 0 for all ai ∈ A, and (ii) wt(M) can be equivalently

expressed as
∑

hj∈H |M(hj)|wt(hj). It turns out that this problem is solv-

able in polynomial time.

Theorem 7.36 ([370]). pop chat min weight is solvable in O(n1m)

time, where n1 is the number of applicants and m is the number of accept-

able applicant–house pairs.

We remark that Theorem 7.36 is a generalisation of Theorem 7.30.

7.4 Weighted House Allocation problem

Mestre [449] introduced the Weighted House Allocation problem (wha),

which is a generalisation of ha in which each applicant ai ∈ A has a positive

weight wt(ai) indicating her priority when it comes to majority voting. The

“more popular than” relation introduced in Sec. 1.5.5 can be generalised to

weighted majorities as follows. Let I be an instance of wha and let M be

the set of matchings in I. For two matchings M,M ′ ∈ M, we say that M ′

is more popular than M , denoted M ′
◮ M , if

∑

ai∈P (M ′,M)

wt(ai) >
∑

ai∈P (M,M ′)

wt(ai).

M is popular if there is no matching M ′ ∈ M such that M ′ ◮ M . Thus

intuitively M is popular if there is no other matching that is preferred by

a weighted majority of the applicants.
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Applicant weights can equally be introduced into instances of hat, cha

and chat, giving rise to what, wcha and wchat respectively. In all cases

the definition of popularity is unchanged from the wha case.

Mestre [449] proved the following results concerning the complexity of

finding a maximum popular matching or reporting that none exists, given

instances of wha and what.

Theorem 7.37 ([449]). Given an instance I of wha, there is an O(n+

m) algorithm to find a maximum popular matching in I or report that I is

unsolvable, where n is the number of applicants and houses, and m is the

number of acceptable applicant–house pairs.

Theorem 7.38 ([449]). Given an instance I of what, there is an

O(min(k
√
n, n)m) algorithm to find a maximum popular matching in I or

report that I is unsolvable, where k is the number of distinct applicant

weights, n is the number of applicants and houses, and m is the number of

acceptable applicant–house pairs.

Sng and Manlove [537] extended Mestre’s algorithm for wha to the cha

case, proving the following result.

Theorem 7.39 ([537]). Given an instance I of wcha, there is an

O(n1.5
1 +m) algorithm9 to find a maximum popular matching in I or report

that I is unsolvable, where n1 is the number of applicants and m is the

number of acceptable applicant–house pairs.

Itoh and Watanabe [331] investigated the solvability probability for a

random instance ofwha in which all applicant preference lists are complete.

In particular, they considered the two-weighted case, where {wt(ai) : ai ∈
A} = {w1, w2}. Without loss of generality assume that w1 > w2. We can

think of the applicants of weight w1 as the high priority applicants, whilst

all other applicants have low priority. The authors in fact considered the

stronger restriction that w1 ≥ 2w2.

For these restrictions, Itoh and Watanabe [331] showed that a random

wha instance is solvable with probability PL(n1, n2) = O(n3
2/n

4
1), where

n1 is the number of applicants and n2 is the number of houses. Thus

if n2/n
4/3
1 = o(1) then PL(n1, n2) = o(1). Similarly they showed that

a random wha instance (again under the above restrictions) is solvable

9In Ref. [537], the weaker upper bound of O(
√
Cn1 +m) was given as the complexity

for this algorithm, where C is the total capacity of the houses. The improved upper
bound follows by the remark in Footnote 6 on Page 16.
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with probability PU (n1, n2) = 1 − O(n4
1/n

3
2). Thus if n

4/3
1 /n2 = o(1) then

PU (n1, n2) = 1− o(1).

7.5 Stable Roommates problem

7.5.1 Introduction

Popular matchings may be defined in instances of sri using a straightfor-

ward adjustment of the notation and terminology introduced in Sec. 1.5.5

for ha. Let I be an instance of sri and let M denote the set of matchings

in I. Given two matchings M,M ′ ∈ M, let P (M,M ′) denote the set of

agents who prefer M to M ′. The “more popular than” relation ◮, and the

concept of a popular matching, are then defined as in Sec. 1.5.5. Thus a

matching M ∈ M is popular if there is no other matching that is preferred

by a majority of the agents. The notion of a popular matching can be

defined in the srti context in the same way as for sri.

We outline structural and algorithm results for popular matchings in

instances of sri and srti in Secs. 7.5.2 and 7.5.3 respectively. We then

consider least unpopularity factor matchings in sri in Sec. 7.5.4. Finally, we

study strongly popular matchings in instances of sri and srti in Sec. 7.5.5.

7.5.2 Strictly-ordered preference lists

Chung [153] was the first to study popular matchings in the context of an

sri instance. He noted the following:

Proposition 7.40 ([240,153]). Let I be an instance of sri and let M be

a stable matching in I. Then M is popular in I.

Proposition 7.40 was proved in the smi case by Gärdenfors [240]. We note

that the converse to Proposition 7.40 need not be true. Also an sri instance

need not admit a popular matching. To see these facts, consider the sr in-

stance I ′ shown in Fig. 7.6. Gale and Shapley [235] observed that I ′ admits

no stable matching, but Biró et al. [86] noted that M1 = {{a1, a4}, {a2, a3}}
and M2 = {{a2, a4}, {a1, a3}} are popular matchings in I ′. If we remove

a4 then the resulting instance is unsolvable.

Biró et al. [86] gave an algorithm for the problem of testing a given

matching M for popularity in a given sri instance I. Let G = (A,E) be the

underlying graph of I, where A = {a1, . . . , an}. We form a weighted graph
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a1 : a2 a3 a4

a2 : a3 a1 a4

a3 : a1 a2 a4

a4 : a1 a2 a3

Fig. 7.6 An instance of sri with a popular matching but no stable matching [235, 86].

HM as follows. The vertices of HM are A ∪ A′, where A′ = {a′1, . . . , a′n}.
The edges of HM are E ∪ E′ ∪ E′′, where E′ = {{a′i, a′j} : {ai, aj} ∈ E}
and E′′ = {{ai, a′i} : 1 ≤ i ≤ n}. For each edge {ai, aj} ∈ E, we define δi,j
as follows:

δi,j =











0, if {ai, aj} ∈ M
1
2 , if ai is unassigned in M or prefers aj to M(ai)

− 1
2 , otherwise.

For each edge {ai, aj} ∈ E, we define the weight of each of the edges

{ai, aj} and {a′i, a′j} in HM to be δi,j + δj,i. Also for each ai ∈ A, we define

the weight of the edge {ai, a′i} in HM to be -1 if ai is assigned in M , and

0 otherwise. It is clear that the weight of each edge belongs to the set

{−1, 0, 1}. Now let

M ′ = M ∪ {{a′i, a′j} : {ai, aj} ∈ M} ∪ {{ai, a′i} : ai is unassigned in M}.
Clearly M ′ is a perfect matching in HM with weight 0. It turns out that

M is popular if and only if M ′ is a maximum weight perfect matching in

HM , as the following lemma indicates.

Lemma 7.41 ([86]). Let I be an instance of sri and let M be a matching

in I. Let HM be the weighted graph defined above. Then M is popular if

and only if a maximum weight perfect matching in HM has weight 0.

Theorem 7.42 ([86]). Let I be an instance of sri and let M be a match-

ing in I. There is an O(
√

nα(n,m)m log3/2 n) algorithm to test whether M

is popular, where n is the number of agents, m is the number of acceptable

pairs of agents, and α is the inverse Ackermann function.

Proof. Clearly HM has O(n) vertices and O(m) edges. For a weighted

graph with weights in the set {−1, 0, 1}, Gabow and Tarjan’s algorithm

[231] for finding a maximum weight perfect matching has complexity

O(
√

nα(n,m)m log3/2 n). �

It is clear that a perfect matching M∗ of positive weight exists in HM

if and only if HM admits an alternating cycle (relative to M ′) of positive
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weight. At present it is unknown as to whether testing for such an alternat-

ing cycle can be achieved in a better running time than finding a maximum

weight perfect matching in the general case.10

Given an sri instance I, the algorithmic complexity of the problem of

finding a popular matching in I or reporting that none exists is, at the time

of writing, unknown.

7.5.3 Preference lists with ties

The algorithm for testing a matching for popularity in an instance of sri,

as presented in the previous subsection, can be extended to the ties case in

a natural way. We simply need to modify the definition of the δi,j = 0 case

to additionally include the possibility that ai is indifferent between aj and

M(ai). As a result we will have weights {−1,− 1
2 , 0,

1
2 , 1} in HM in general,

but the remainder of the technique and the complexity of the popularity

checking algorithm is as before. Hence we have the following result.

Theorem 7.43 ([86]). Given an instance I of srti and a matching M

in I, there is an O(
√

nα(n,m)m log3/2 n) algorithm to test whether M is

popular, where n is the number of agents, m is the number of acceptable

pairs of agents, and α is the inverse Ackermann function.

Recall from Proposition 7.40 that a stable matching in a given sri in-

stance is popular. However the analogue of this result does not hold for

srti in the case of weak stability: Chung [153] gave an example srti in-

stance with 7 weakly stable matchings but no popular matching. Biró et al.

[86] proved that finding a popular matching, or reporting that none exists,

is NP-hard in the case of srti.

Theorem 7.44 ([86]). Given an instance I of srti, the problem of de-

ciding whether a popular matching exists is NP-complete. The same is true

even if the popular matching is required to be complete. Both results hold

even if I is an instance of smti.11

10Note that if G (and therefore HM ) is bipartite, the edges in HM can be directed to
yield a digraph DM satisfying the property that HM has an alternating cycle of positive
weight if and only if DM has a positive weight cycle [227]. By negating the arc weights
in DM , we can test for a positive weight cycle in DM in O(

√
nm) time [255]. However

this transformation breaks down in the case that G is non-bipartite.
11See Theorem 7.62.
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It is open as to whether Theorem 7.44 holds even if I is an instance of srt

(i.e., all preference lists are complete).

7.5.4 Least unpopularity factor matchings

Huang and Kavitha [296] studied matchings with low unpopularity factor

in the context of sri. All notation and terminology defined in Definition

7.18 (see Sec. 7.2.7) relating to the unpopularity factor of matchings in hat

carry over to sri without modification. The authors proved the following

results:

Theorem 7.45 ([292]). Let I be an instance of sr. The problem of com-

puting a least unpopularity factor matching in I is NP-hard. Moreover there

is no approximation algorithm for the problem of finding a least unpopular-

ity factor matching in I with performance guarantee 4/3−ε, for any ε > 0,

unless P=NP.

Theorem 7.46 ([292]). Let I be an instance of sri. There is an O(m)

algorithm to find a matching M in I such that u(M) = 4 logn + O(1),

where n is the number of agents and m is the number of acceptable pairs of

agents.

Theorem 7.46, which guarantees the existence, in an arbitrary sri instance,

of a matching M where u(M) = O(log n) is surprising. For, recall that

Fig. 7.4 illustrated an ha instance I ′ where u(M ′) = Ω(n1) for every match-

ing M ′ in I ′, where n1 is the number of applicants in I ′.

7.5.5 Strongly popular matchings

Given an instance of sri or srti, a strongly popular matching can be defined

in exactly the same way as for hat (see Sec. 1.5.5). Two straightforward

facts about strongly popular matchings in instances of srti are as follows:

Proposition 7.47 ([240,86]). Let I be an instance of srti and let M be

a strongly popular matching in I. Then

(i) M is the only popular matching in I;

(ii) M is weakly stable in I.

Biró et al. [86] proved Proposition 7.47 for sri, and Gärdenfors [240] proved

Part (ii) of Proposition 7.47 for smti. A consequence of Part (i) is that



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

372 Popular matchings

an srti instance admits at most one strongly popular matching. Together

with Proposition 7.40, it follows that in an sri instance, strong popularity

implies stability, which in turn implies popularity.

Biró et al. [85, Example 2] gave an example instance of sri (in fact an

instance of smi) that admits one popular matching (which is the unique

stable matching) but no strongly popular matching.

We now turn to the problem of testing a matching for strong popularity.

We firstly consider the case that we are given an instance I of sri. Suppose

that M is a stable matching in I. Define the graph H ′
M = (A,EM ), where

EM =

{

{ai, aj} ∈ E :
ai is unmatched in M or prefers aj to M(ai) ∨
aj is unmatched in M or prefers ai to M(aj)

}

.

The following lemma, proved by Biró et al. [86], leads to an O(m) algorithm

for testing a matching for strong popularity, where m is the number of

acceptable pairs of agents.

Lemma 7.48 ([86]). Let I be an instance of sri and let M be a stable

matching in I. Let H ′
M be the graph defined above. Then M is strongly

popular in I if and only if H ′
M contains no alternating cycle or augmenting

path relative to M .

Theorem 7.49 ([86]). Let I be an instance of sri and let M be a match-

ing in I. There is an O(m) algorithm to test whether M is strongly popular,

where m is the number of acceptable pairs of agents in I.

Proof. We firstly check whether M is stable, which may be verified in

O(m) time [261]. If not, then M cannot be strongly popular by Proposition

7.47. Now build H ′
M in O(m) time. By Lemma 7.48, M is strongly popular

if and only if H ′
M contains no augmenting path or alternating cycle relative

to M . We may test for the existence of each of these structures in O(m)

time (see Refs. [225, 229] and [228] respectively). �

Now suppose that I is an instance of srti. To test whether a matching

M is strongly popular in I, we can use a slight variation on the technique

described in the lead-up to Theorems 7.42 and 7.43. Recall the definitions

of HM and M ′ as given in the preamble to Theorem 7.42. It is not difficult

to verify that M is strongly popular if and only if M ′ is the unique max-

imum weight perfect matching in HM . Thus, we must firstly verify that

M ′ is a maximum weight perfect matching in HM by checking that a maxi-

mum weight perfect matching constructed by the O(
√

nα(n,m)m log3/2 n)

algorithm of Gabow and Tarjan [231] has weight 0. Next, we use the O(m)
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algorithm of Gabow et al. [228] to determine whether a given maximum

weight perfect matching in a weighted graph is unique. We thus have the

following result.

Theorem 7.50 ([86]). Let I be an instance of srti and let M be a match-

ing in I. There is an O(
√

nα(n,m)m log3/2 n) algorithm12 to test whether

M is strongly popular, where n is the number of agents, m is the number

of acceptable pairs of agents, and α is the inverse Ackermann function.

We now consider the problem of finding a strongly popular matching

or reporting that none exists. Biró et al. [86] showed that this problem is

polynomial-time solvable in the case of sri.

Theorem 7.51 ([86]). Let I be an instance of sri. There is an O(m)

algorithm to find a strongly popular matching in I, or report that none

exists, where m is the number of acceptable pairs of agents in I.

Proof. We firstly use Irving’s algorithm [261, Section 4.5.2] to find a

stable matching M in I or report that no such matching exists in O(m)

time. In the latter case, M does not admit a strongly popular matching by

Part (ii) of Proposition 7.47. Otherwise, by Part (i) of Proposition 7.47, M

is popular. By Theorem 7.49, we can test whether M is strongly popular

in O(m) time. If so, we output M . Otherwise, by Part (i) of Proposition

7.47, I admits no strongly popular matching. �

The algorithmic complexity of the problem of finding a strongly pop-

ular matching, or reporting that none exists, given an instance of srti, is

currently open.

7.6 Stable Marriage problem

7.6.1 Introduction

In the previous section we considered popular matchings in instances of sri

and srti. In this section we restrict attention to the bipartite case, where

we are given an instance of smi or smti. In the case of smi, there is a nice

structural characterisation of popular matchings (described in Sec. 7.6.2),

leading to an efficient algorithm for finding a maximum popular matching

(outlined in Sec. 7.6.3). This characterisation breaks down in the smti

12A slightly different technique for solving this problem is described in Ref. [86], with
the same time complexity.
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case: indeed, as we will see in Sec. 7.6.4 (among other results for popular

matchings in smi and smti), the NP-completeness results of Theorem 7.44

hold even in this restricted setting.

We begin with the following straightforward result for smi, which is an

immediate consequence of Proposition 7.40.

Proposition 7.52. Let I be an instance of smi. Then I admits a popular

matching, and such a matching can be found in O(m) time using the Gale–

Shapley algorithm, where m is the number of acceptable man–woman pairs.

7.6.2 Characterising popular matchings

Huang and Kavitha [297] arrived at a neat characterisation of popular

matchings in smi. To describe this characterisation, we require to define

some additional notation, as follows.

Definition 7.53 ([297]). Let I be an instance of smi and let G = (V,E)

be the underlying graph of I. Let M be a matching in I. For any edge

(mi, wj) ∈ E, define the label of this edge to be (α, β), where

α =























1, if

{

either mi is unassigned in M ,

or mi is assigned in M and prefers wj to M(mi)

0, if (mi, wj) ∈ M

−1, if mi is assigned in M and prefers M(mi) to wj .

The definition of β is analogous. We define the reduced labelled graph of

M , denoted G+
M , to be the subgraph of the labelled graph G that is obtained

by deleting all edges labelled (−1,−1) from G.

On the basis of this definition, Huang and Kavitha proved the following.

Theorem 7.54 ([297]). Let I be an instance of smi and let M be a match-

ing in I. Let G+
M be as defined in Definition 7.53. Then M is popular in I

if and only if the following three conditions are satisfied in G+
M :

(i) there is no alternating cycle relative toM that contains an edge labelled

(1,1);

(ii) there is no alternating path relative to M from an unassigned agent

that contains an edge labelled (1,1);

(iii) there is no alternating path relative to M that contains two or more

edges labelled (1,1).
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Men’s preferences Women’s preferences

m1 : w2 w1 w1 : m1
{

Instance I1m2 : w2 w2 : m1 m2

m1 : w1 w1 : m2 m1
{

Instance I2m2 : w1 w2 w2 : m3 m2

m3 : w2 w3 w3 : m3

Fig. 7.7 Two instances of smi due to Biró et al. [86]

On the basis of this characterisation, Huang and Kavitha [297] gave a

linear-time algorithm for testing a given matching for popularity.

Theorem 7.55 ([297]). Let I be an instance of smi and let M be a match-

ing in I. There is an O(m) algorithm to test whether M is popular in I,

where m is the number of acceptable man–woman pairs in I.

An O(
√
nm) algorithm for this problem was given by Biró et al. [86], where

n is the size of I.

Huang and Kavitha [297] remarked that the characterisation also holds

in the case that I is an instance of sri. However they were not able to

use it in order to formulate an algorithm for testing a matching for pop-

ularity in the sri context that improves on the O(
√

nα(n,m)m log3/2 n)

method given by Theorem 7.42. Hence we have presented the characteri-

sation given by Theorem 7.54 in this section, whilst describing instead the

characterisation of popular matchings via maximum weight matchings in

Sec. 7.5.

7.6.3 Maximum popular matchings

We have already seen from Proposition 7.52 that every instance of smi ad-

mits at least one popular matching. However, popular matchings may

be of different sizes. This is illustrated by instance I1, due to Biró

et al. [86], shown in Fig. 7.7. The matching M1 = {(m1, w2)} is the

unique stable matching and hence popular. However the matching M2 =

{(m1, w1), (m2, w2)} is also popular. Clearly I1 can be replicated as many

times as necessary to produce an arbitrarily large smi instance for which

the size of a popular matching can be twice the size of a stable matching.

In many applications we seek to assign as many agents as possible, so

the observations in the previous paragraph motivate the problem of finding
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a maximum popular matching in an smi instance. One strategy for finding a

maximum popular matching could involve starting with a stable matching,

and attempting to find augmenting paths that preserve popularity until we

reach a maximum popular matching. However there are three complications

with this approach.

Firstly, it turns out that a maximum popular matching can be smaller

than the size of a maximum cardinality matching in the underlying graph.

To see this, consider instance I2, due to Biró et al. [86], shown in Fig. 7.7.

The unique perfect matching M1 = {(m1, w1), (m2, w2), (m3, w3)} is not

popular (the stable matching M2 = {(m2, w1), (m3, w2)} is more popular

than M1).

Secondly, stable matchings do not provide a very good starting point,

as the following result shows.

Proposition 7.56 ([297]). Let I be an instance of smi and let M be a

stable matching in I. Then M is a minimum popular matching.

The third, and most serious, complication is that popularity is not an

interpolating invariant in the context of an smi instance I. That is, if

pop−(I) and pop+(I) denote the minimum and maximum cardinalities of a

popular matching in I, then there need not be a popular matching of size

k, for each k such that pop−(I) ≤ k ≤ pop+(I). This was illustrated by

Huang and Kavitha [297] who gave an example smi instance with popular

matchings of sizes 4 and 6, but no popular matching of size 5. Recall that

popularity is an interpolating invariant in the context of ha (see Theorem

7.5).

There is, however, an alternative method for finding a maximum popular

matching that is based on the characterisation given by Theorem 7.54,

together with the following additional result.

Theorem 7.57 ([297]). Let I be an instance of smi and let M be a match-

ing in I. Let G+
M be as defined by Definition 7.53. Suppose that M satisfies

Conditions (i)-(iii) of Theorem 7.54. (Then M is popular.) Now suppose

in addition that the following condition is satisfied in G+
M :

(iv) there is no augmenting path relative to M .

Then M is a maximum popular matching.

Huang and Kavitha [297] showed that in general, Condition (iv) is not

a necessary condition for a popular matching to be of maximum size: they
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gave an example smi instance with a maximum popular matching M that

admits an augmenting path in G+
M . However they showed that a different

maximum popular matching that admits no augmenting path in G+
M exists.

Moreover they showed that for a general smi instance, it is always possible

to find a matching satisfying Conditions (i)-(iv) in Theorems 7.54 and 7.57,

as the following result indicates.

Theorem 7.58 ([297]). Let I be an instance of smi. There is an O(nm)

algorithm to find a matching that satisfies Conditions (i)-(iv) of Theorems

7.54 and 7.57, where n is the size of I and m is the number of acceptable

man–woman pairs in I. By Theorems 7.54 and 7.57, M is a maximum

popular matching in I.

Kavitha [362] gave a faster algorithm for finding a maximum popular match-

ing in an instance of smi.

Theorem 7.59 ([362]). Let I be an instance of smi. There is an O(m)

algorithm to find a maximum popular matching in I, where m is the number

of acceptable man–woman pairs in I.

Huang and Kavitha [297] also observed that a maximum popular match-

ing has size at least two-thirds times that of a maximum cardinality match-

ing in an instance of smi. If we consider the smi instance I2 shown in

Fig. 7.7, M = {(m2, w1), (m3, w2)} is a popular matching of size 2 in I.

We have already seen that a maximum cardinality matching in I2 has size

3. Clearly I2 can be replicated as many times as desired to produce an

arbitrarily large smi instance showing that this bound is tight.

In the case of sri, the complexity of the problem of finding a maximum

popular matching is open (note that, as already observed at the end of

Sec. 7.5.2, the complexity of the problem of finding an arbitrary popular

matching in an sri instance is open). It looks as though additional ideas

are required over and above the characterisation given by Theorem 7.54:

Huang and Kavitha [297] gave an example of a solvable sri instance where

no popular matching satisfies Condition (iv) of Theorem 7.57.

7.6.4 Further results for smi and smti

Kavitha [362] proved some further results regarding popular matchings in

instances of smi.
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Let I be an instance of smi and let M+ be the set of maximum match-

ings in the underlying graph of I. We say that a matching M ∈ M+ is

popular among maximum matchings if there is no matching M ′ ∈ M+

such that |P (M ′,M)| > |P (M,M ′)|. That is, there is no other maximum

matching that is preferred to M by a majority of the agents. Kavitha [362]

proved that a matching that is popular among maximum matchings always

exists in I and can be found efficiently.

Theorem 7.60 ([362]). Let I be an instance of smi. A matching that is

popular among maximum matchings in I exists and can be found in O(nm)

time, where n is the size of I and m is the number of acceptable man–woman

pairs in I.

Theorem 7.59 indicates the existence of an O(m) algorithm for finding a

maximum popular matching (which, as previously mentioned, is guaranteed

to be of size at least two-thirds times that of a maximum matching), whilst

Theorem 7.60 shows that we can find in O(nm) time a maximum matching

M that is popular among the set of maximum matchings. However M may

have a large unpopularity factor when considering all matchings in I — see

Ref. [362] for further details). It is thus of interest to determine whether

there are matchings in between these two extremes.

Kavitha [362] demonstrated the existence of a spectrum of matchings

Mk (2 ≤ k ≤ n) such that |Mk| ≥ k
k+1β

+(G) and u(Mk) ≤ k − 1, where

β+(G) is the size of a maximum matching in the underlying graph G of I.

Moreover she showed that each such matching can be computed efficiently.

Theorem 7.61 ([362]). Let I be an instance of smi. For each k (2 ≤
k ≤ n), there is an O(km) algorithm to construct a matching Mk such that

|Mk| ≥ k
k+1β

+(G) and u(Mk) ≤ k − 1, where n is the size of I, β+(G) is

the size of a maximum matching in the underlying graph G of I and m is

the number of acceptable man–woman pairs in I.

In the context of Theorem 7.61, if k = 2 then we obtain Theorem 7.59,

whilst if k = n then we obtain Theorem 7.60.

The notion of a popular matching can be defined in the smti context

in the same way as for smi. However, in contrast to the case for smi,

an instance of smti need not be solvable. To see this, consider the smti

instance I ′ given in Fig. 7.8. It is not difficult to verify that I ′ is unsolvable,

for the same reason that the ha instance I1 of Fig. 1.3 is unsolvable.
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Men’s preferences Women’s preferences
m1 : w1 w2 w3 w1 : (m1 m2 m3)
m2 : w1 w2 w3 w2 : (m1 m2 m3)
m3 : w1 w2 w3 w3 : (m1 m2 m3)

Fig. 7.8 An instance of smti with no popular matching

Biró et al. [86] proved that finding a popular matching, or reporting that

none exists, is NP-hard in the case of smti — this result can be regarded

as strengthening Theorem 7.44.

Theorem 7.62 ([86]). Given an instance I of smti, the problem of de-

ciding whether a popular matching exists is NP-complete. The same is true

even if the popular matching is required to be complete.

As in the case of Theorem 7.44, it is open as to whether Theorem 7.62 holds

even if all preference lists are complete.

Sng [535] considered popular matchings in instances of smti with sym-

metric preferences. He gave an O(
√
nm) algorithm for testing a given

matching for popularity in such an instance I, where n is the size of I and

m is the number of acceptable man–woman pairs in I. He left open the

complexity of the problem of finding a popular matching in I or reporting

that no such matching exists.

7.7 Conclusions and open problems

As discussed in Sec. 7.1, the study of the structure of popular matchings,

and the algorithmic complexity of computing these types of matchings,

is still a relatively young area of research. Despite this, some impressive

progress has been made in a relatively short space of time, which accounts

for the length of this chapter. For a range of matching problems, we know

how to efficiently test a matching for popularity, find a popular matching

or report that the instance is unsolvable, and even find a maximum popular

matching in the case of a solvable instance. However some notable open

problems remain. These include:

• It remains open to obtain a structural characterisation of the set of pop-

ular matchings in an instance of hat. Clearly the switching graph def-

inition (presented in Sec. 7.2.5) will need to be extended if there is any

hope of progress in this direction, since in the hat context we would



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

380 Popular matchings

presumably define OM (ai) = (f(ai) ∪ s(ai))\{M(ai)} for a given appli-

cant ai ∈ A, with respect to a given matching M .

• In Sec. 7.2.7 we stated that each of the problems of computing a least

unpopularity factor matching and a least unpopularity margin matching,

given an instance of ha, is NP-hard. Theorem 7.21 indicates that the

former problem is not approximable within 3/2− ε, for any ε > 0, unless

P=NP. It remains open to find a tighter lower bound and/or to give

an upper bound. No approximability results are known for the least

unpopularity margin matching problem. The results of Theorem 7.23

may be useful in this context.

• One of the most intriguing open problems is the following: given an sri

instance I, find a popular matching M in I or report that I is unsolvable.

Currently it is not known whether this problem is solvable in polynomial

time or is NP-hard. Similar remarks apply if M is required to be a maxi-

mum popular matching. On the positive side, we have already remarked

that the characterisation of popular matchings in smi given by Theorem

7.54 holds in the sri case, although the same is not true for the char-

acterisation of maximum popular matchings in smi given by Theorem

7.57.

• It is also open as to whether each of the problems of finding a popular

matching and a maximum popular matching in the context of srti and

smti is NP-hard even if the preference lists are complete. That is, do

Theorems 7.44 and 7.62 hold even if we are given an instance of srt or

smt respectively?

• Our last open problem concerns the complexity of the problem of finding

a strongly popular matching, or reporting that none exists, given an

instance of srti, which is unknown at the time of writing.
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Chapter 8

Profile-based optimal matchings

8.1 Introduction

In this chapter we study matchings that are optimal with respect to criteria

that involve the profile of a matching. In Sec. 1.5.6 we defined the concepts

of a rank-maximal matching, a greedy maximum matching and a generous

maximum matching. These are very natural notions of optimality that, it

could be imagined, may be desirable as solution criteria for an administrator

of a centralised matching scheme.

Our main focus here is on how matchings of these types can be computed

efficiently. We will present polynomial-time algorithms for finding rank-

maximal, greedy maximum and generous maximum matchings. Much less

is known about the structure of the sets of matchings that are optimal with

respect to these criteria: we shall return to this point in the open problems

section at the end of this chapter.

These types of optimal matchings have applications in a range of bipar-

tite matching settings where there are preferences on one side only. These

include assigning students to projects or courses, customers to DVD rentals

and reviewers to conference papers. The application involving assigning stu-

dents to projects and courses was described in Sec. 1.5.8, whilst the latter

two applications will be discussed in this chapter.

It should be noted that mechanisms based on computing profile-based

optimal matchings are not strategy-proof in general. To see this, con-

sider the ha instance I involving two houses, h1 and h2, and two ap-

plicants, a1 and a2, each of whom prefers h1 to h2. The matching

M1 = {(a1, h2), (a2, h1)} is a rank-maximal, greedy maximum and gen-

erous maximum matching in I. However suppose that a1 now truncates

her preference list by deleting h2, to try to ensure that she is matched to

381
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her first-choice house. Then M2 = {(a1, h1), (a2, h2)} is the unique rank-

maximal, greedy maximum and generous maximum matching in the ha

instance so obtained. Thus it is in a1’s interests to misrepresent her true

preferences. The potential for manipulation can be seen as a weakness of

the profile-based optimality criteria, in contrast to their qualities that are

otherwise attractive to a mechanism designer.

The remainder of this chapter is organised as follows. In Sec. 8.2 we de-

scribe polynomial-time algorithms for finding a rank-maximal matching in

various problem contexts including hat, chat, hrt and srti. We consider

algorithmic results for greedy maximum and generous maximum matchings

for the same problems in Sec. 8.3. Sec. 8.4 concerns matchings that are

weight-maximal, a profile-based optimality property that involves weight

functions. This concept generalises rank-maximal, greedy maximum and

generous maximum matchings. We then consider two further profile-based

optimal matching problems in Sec. 8.5, namely the Rental Market problem

and the Reviewer Assignment problem. These problems provide two nice

practical applications of profile-based optimal matchings (further examples

were given in Sec. 1.5.8). Finally Sec. 8.6 presents some concluding remarks

and open problems.

8.2 Rank-maximal matchings

8.2.1 Introduction

Let I be an instance of chat and let M denote the set of matchings in I.

Recall from Sec. 1.5.6 and Sec. 1.5.7 that the profile of a matching M ∈ M,

denoted p(M), is a tuple 〈p1, . . . , pr∗〉, where r∗ = r(M) is the regret of M ,

and for each k (1 ≤ k ≤ r∗), pk is the number of applicants who have their

kth-choice house in M .

Throughout this chapter it will be convenient to use the term profile to

refer to a tuple of (non-negative) integers of arbitrary (non-zero) length.

Let r denote the maximum rank of a house in an applicant’s preference list,

taken over all applicants in I. For any k (1 ≤ k ≤ r), let Ok denote the

k-tuple 〈0, 0, . . . , 0〉 of zeros. The empty matching has profile O1. We will

also assume throughout this chapter that, with the exception of Ok (for

any k), the rightmost element of a profile vector is non-zero, otherwise it

can be deleted (and the rule applied recursively).

We define a relation ≻L on profiles as follows. Let ρ1 = 〈p1, . . . , pl1〉
and ρ2 = 〈q1, . . . , ql2〉 be two profiles. We say that ρ1 left-dominates ρ2,



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

8.2. Rank-maximal matchings 383

denoted ρ1 ≻L ρ2, if either (i) l1 > l2 and pk = qk for 1 ≤ k ≤ l2, or (ii)

there exists some s (1 ≤ s ≤ l1) such that l2 ≥ s, pk = qk (1 ≤ k ≤ s− 1)

and ps > qs. Clearly ≻L is a strict linear order. This linear order may be

extended to M as follows. If M,M ′ ∈ M, we say that M left-dominates

M ′, denoted M ≻L M ′, if p(M) ≻L p(M ′).

Clearly a matching M ∈ M is rank-maximal if and only if there is no

matching that left-dominates M . It is also obvious that all rank-maximal

matchings in I have the same profile, and hence the same cardinality.

In this section we present efficient algorithms for constructing rank-

maximal matchings in a range of types of problem instances. In particular

we consider hat (Sec. 8.2.2), chat (Sec. 8.2.3), hrt (Sec. 8.2.4) and srti

(Sec. 8.2.5).

8.2.2 House allocation problem with Ties

There are several methods in the literature for finding a rank-maximal

matching M in an hat instance. In Sec. 8.2.2.1 we describe an O(min(n1+

r∗, r∗
√
n1)m) time algorithm, based on the Dulmage–Mendelsohn Decom-

position of a bipartite graph (see Definition 1.4), where n1 is the number

of applicants, m is the number of acceptable applicant–house pairs, and

r∗ = r(M) is the regret of M . An alternative method is to reduce the

problem to that of finding a maximum weight matching in a weighted bi-

partite graph — this technique is outlined in Sec. 8.2.2.2.

Weighted rank-maximal matchings generalise the concept of a rank-

maximal matching to the case where applicants have weights that indicate

their priority levels (an analogue for popular matchings was considered in

Sec. 7.4). We study such matchings in Sec. 8.2.2.3. Finally, Sec. 8.2.2.4

gives an overview of an empirical comparison of algorithms for computing

rank-maximal matchings by Michail [453].

8.2.2.1 Algorithm using the Dulmage–Mendelsohn decomposition

Irving et al. [318] described a polynomial-time algorithm for finding a rank-

maximal matching in an instance of hat that is based on the Dulmage–

Mendelsohn Decomposition of a bipartite graph (see Definition 1.4).

Let I be an instance of hat where A is the set of applicants and H is

the set of houses, and let G = (V,E) be the underlying graph of I. Let

r = max{rank(ai, hj) : (ai, hj) ∈ E} be the maximum rank of a house in

an applicant ai’s list, taken over all ai ∈ A. For each k (1 ≤ k ≤ r), define
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Algorithm 8.1 Algorithm Rank-maximal-HAT [318]

Require: hat instance I with underlying graph G = (V,E)
Ensure: return a rank-maximal matching Mr in I
1: for k := 1 to r do

2: E′
k := Ek;

3: end for

4: G′
1 := (V,E′

1);
5: M1 := maximum matching in G′

1;
6: for k := 1 to r − 1 do

7: {G′
k := (V, E′

k) and Mk is a maximum matching in G′
k};

8: compute an EOU labelling of G′
k; {let Ek, Ok, Uk be the sets of even, odd

and unreachable vertices in G′
k respectively}

9: E′
k := E′

k\{(ai, hj) : (ai ∈ Ok ∧ hj ∈ Ok ∪ Uk) ∨ (ai ∈ Uk ∧ hj ∈ Ok)};
10: for l := k + 1 to r do

11: E′
l := E′

l\{(ai, hj) : (ai ∈ Ok ∪ Uk) ∨ (hj ∈ Ok ∪ Uk)};
12: end for

13: E′
k+1 := E′

k ∪E′
k+1;

14: G′
k+1 := (V,E′

k+1); {Mk ⊆ E′
k+1}

15: augment Mk to a maximum matching Mk+1 in G′
k+1;

16: end for

17: return Mr;

Ek, the set of rank-k edges in G, as follows:

Ek = {(ai, hj) ∈ E : rank(ai, hj) = k}.
Define also E≤k =

⋃k
l=1 El. Let Gk = (V,E≤k) be the subgraph of G

containing the edges in E≤k, and let Ik be the corresponding sub-instance

of I with underlying graph Gk.

The algorithm works by constructing a maximum matching Mk in a

certain subgraph of Gk, denoted G′
k = (V,E′

k), for each k (1 ≤ k ≤ r).

Initially E′
k = Ek (1 ≤ k ≤ r), G′

1 = G1, and M1 is a maximum matching

in G′
1. During a subsequent for loop, which iterates over values of k between

1 and r−1, the objective is to form a maximummatchingMk+1 in G′
k+1. At

the beginning of each loop iteration, two invariants are that (i) E′
k ⊆ E≤k,

and (ii) Mk is a maximum matching in G′
k.

During each loop iteration, certain edges may be deleted from the sets

E′
l for k ≤ l ≤ r. These edges are selected by constructing an EOU labelling

of G′
k (see Definition 1.4). We denote the sets of even, odd and unreachable

vertices in this labelling by Ek, Ok and Uk respectively.

As Mk is a maximum matching in G′
k, it follows by Theorem 1.5 that

Mk contains no edge joining a vertex in Ok to a vertex in Ok ∪ Uk. Hence

any such edge is removed from E′
k. Also by Theorem 1.5, every vertex in
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Ok ∪ Uk is incident to an edge in Mk. Hence any edge incident to such

a vertex is removed from E′
l (k + 1 ≤ l ≤ r). Having carried out these

deletions, G′
k+1 = (V,E′

k+1) is then obtained from G′
k by adding the edges

in E′
k to E′

k+1. No edge of Mk is removed by these deletions, and hence Mk

remains a subset of E′
k+1. We then augment Mk to a maximum matching

Mk+1 in G′
k+1.

The algorithm of Irving et al. [318] for finding a rank-maximal matching

is shown as Algorithm Rank-maximal-HAT in Algorithm 8.1.

The edge deletions carried out at iteration k ensure that Mk+1 still

contains a maximum matching of G′
k. For, each vertex in Ok ∪Uk remains

matched by some edge of Mk+1, since Mk+1 is obtained by augmenting

Mk. Moreover, any such edge must belong to E′
k, given the edges removed

from E′
l for l > k. Further, given the edges removed from E′

k, any Ok-

vertex is matched in Mk+1 to an Ek-vertex, and any Uk-vertex is matched

in Mk+1 to another Uk-vertex. Thus Mk+1 contains a matching of G′
k of

size |Ok|+ |Uk|/2, which is a maximum matching of G′
k by Theorem 1.5.

This argument led Irving et al. to prove inductively that, for each k

(1 ≤ k ≤ r), Mk is a rank-maximal matching in Ik. By considering the

case k = r, we may deduce that Mr is a rank-maximal matching in I.

Indeed, Irving et al. established the following result.

Theorem 8.1 ([318]). Let I be an instance of hat. Algorithm Rank-

maximal-HAT finds a rank-maximal matching M in I in O(min(n1 +

r∗, r∗
√
n1)m) time, where n1 is the number of applicants, m is the number

of acceptable applicant–house pairs, and r∗ = r(M) is the regret of M .

Note that, to achieve the running time stated in Theorem 8.1, Algorithm

Rank-maximal-HAT should be altered as follows. At the beginning of each

iteration k of the main loop, the graph G′
r should be constructed (recall

that r is the maximum rank of a house in an applicant’s list, taken over all

applicants) — this graph has vertex set V and edge set
⋃r

k=1 E
′
k. If Mk is

a maximum matching in G′
r then the loop can be terminated. Otherwise

G′
r contains an edge (ai, hj) such that rank(ai, hj) > k and the addition of

this edge leads to a larger matching. It follows that r∗ > k. The remainder

of iteration k is as described in Algorithm Rank-maximal-HAT.

Illustrative example. We now give an example that illustrates an ex-

ecution of Algorithm Rank-maximal-HAT as applied to the ha instance I4
shown in Fig. 1.5. G′

1 contains the edges {(ai, h1) : 1 ≤ i ≤ 4} ∪ {(a5, h2)}.
Initially the algorithm may choose M1 = {(a1, h1), (a5, h2)}.
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At iteration 1 of the main loop, O1 = {h1}, U1 = {a5, h2} and E1
contains all other vertices not in O1 ∪ U1. As a5 ∈ U1, the following edge

deletions occur: (a5, h5) from E′
2, (a5, h4) from E′

3, (a5, h3) from E′
4, and

(a5, h1) from E′
5. As h2 ∈ U1, (a1, h2), (a2, h2) and (a3, h2) are deleted

from E′
2, and (a4, h2) is deleted from E′

5. The edge in E′
2 = {(a4, h3)} is

added to G′
1 to give G′

2. The algorithm will then augment M1 to M2 =

{(a1, h1), (a4, h3), (a5, h2)} in G′
2.

At iteration 2, O2 = {h1}, U2 = {a4, a5, h2, h3} and E2 =

{a1, a2, a3, h4, h5}. As a4 ∈ U2 and h1 ∈ O2, (a4, h1) is deleted from E′
2.

As a4 ∈ U2, (a4, h5) is deleted from E′
3 and (a4, h4) is deleted from E′

4. As

h3 ∈ U2, (a1, h3), (a2, h3) and (a3, h3) are deleted from E′
3. Then E′

3 = ∅,
so G′

3 = G′
2 and M3 = M2.

At iteration 3, O3 = O2, U3 = U2 and E3 = E2. Thus there are no edge

deletions at this iteration. The edges in E′
4 = {(a1, h4), (a2, h4), (a3, h4)}

are added to G′
3 to give G′

4. The algorithm may then augment M3 to

M4 = {(a1, h1), (a3, h4), (a4, h3), (a5, h2)} in G′
4.

At iteration 4, E4 = {a1, a2, a3, h5}, U4 = {a4, a5, h2, h3} and O4 =

{h1, h4}. There are no edge deletions at this iteration. The edges in E′
5 =

{(a1, h5), (a2, h5), (a3, h5)} are added to G′
4 to give G′

5. The algorithm may

then augment M4 to M5 = {(a1, h1), (a2, h4), (a3, h5), (a4, h3), (a5, h2)} in

G′
5. M5 is then a rank-maximal matching in I4.

8.2.2.2 Reduction to the Assignment problem

Given an instance I of hat, a rank-maximal matching may also be found

using a transformation to the Assignment problem. To see this, let A be

the set of applicants and let H be the set of houses in I, where n1 = |A|.
Also let G = (V,E) be the underlying graph of I, and let r be the maximum

rank of a house in an applicant ai’s preference list, taken over all ai ∈ A.

Define a weight function wt : E −→ N as follows. Given an edge (ai, hj) in

G, let wt(ai, hj) = nr−k
1 , where rank(ai, hj) = k.

This steeply-decreasing sequence of edge weights ensures that rank-1

edges have highest priority, followed by rank-2 edges, and so on. In par-

ticular, the weights ensure that only the addition of n1 rank-(k + 1) edges

can compensate for the loss of a rank-k edge (for some 1 ≤ k ≤ r − 1), as-

suming that only lower-rank edges are available. This is sufficient to ensure

that a maximum weight matching in G is a rank-maximal matching. This

transformation was observed by Irving et al. [318] without proof, and for

completeness we now prove its correctness.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

8.2. Rank-maximal matchings 387

Proposition 8.2 ([318]). Let I be an instance of hat and let wt be the

weight function in the underlying graph G = (V,E) as defined above. Then

a maximum weight matching in G is a rank-maximal matching in I.

Proof. Let M be a maximum weight matching in G with respect to

wt. Suppose that M ′ ≻L M for some matching M ′ in I. We lose no

generality by assuming that M ′ is a rank-maximal matching in I. Let

p(M) = 〈p1, . . . , pl1〉 and p(M ′) = 〈q1, . . . , ql2〉. Then either (i) l2 > l1
and pk = qk for 1 ≤ k ≤ l1, or (ii) there exists some s (1 ≤ s ≤ l2) such

that l1 ≥ s, pk = qk (1 ≤ k ≤ s − 1) and qs > ps. In case (i), we let

s = min{k : k > l1 ∧ qk > 0} and let pk = 0 (l1 + 1 ≤ k ≤ s). Also let

l′1 = s. In case (ii), we let l′1 = l1.

Letting wt(M) denote the total weight of the edges in M , we obtain the

following:

wt(M) =

l′1
∑

k=1

pkn
r−k
1

≤
s

∑

k=1

pkn
r−k
1 +





l′1
∑

k=s+1

pk



nr−s−1
1 (8.1)

Also, considering wt(M ′), we have:

wt(M ′) =

l2
∑

k=1

qkn
r−k
1

=

s−1
∑

k=1

pkn
r−k
1 + qsn

r−s
1 +

l2
∑

k=s+1

qkn
r−k
1

≥
s−1
∑

k=1

pkn
r−k
1 + (ps + 1)nr−s

1 +

l2
∑

k=s+1

qkn
r−k
1

=

s
∑

k=1

pkn
r−k
1 + nr−s

1 +

l2
∑

k=s+1

qkn
r−k
1 (8.2)

Thus, from Inequalities 8.1 and 8.2, wt(M ′) > wt(M) unless
∑l′1

k=s+1 pk ≥
n1. In this case, pk = qk = 0 for 1 ≤ k ≤ s−1, ps = 0 and

∑l′1
k=s+1 pk = n1.

In fact, the only way that wt(M) ≥ wt(M ′) can occur is if (i) ps+1 = n1 and
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pk = 0 for s + 2 ≤ k ≤ l′1, and (ii) qs = 1 and qk = 0 for s + 1 ≤ k ≤ l2.

Indeed, wt(M) = wt(M ′) in this case.

In such a setting, M ′ = {(ai, hj)} for some (ai, hj) ∈ E such that

rank(ai, hj) = s. Also M contains n1 rank-(s + 1) edges. Pick any ai′ ∈
A\{ai}. Then (ai′ , hj′) ∈ M for some hj′ ∈ H where rank(ai′ , hj′ ) =

s + 1. If hj 6= hj′ then M ′′ = {(ai, hj), (ai′ , hj′)} satisfies M ′′ ≻L M ′, a

contradiction to the rank-maximality of M ′. Otherwise pick any hj′′ on

the preference list of ai′ such that rank(ai′ , hj′′ ) ≤ s. Then hj′′ 6= hj

and M ′′ = {(ai, hj), (ai′ , hj′′)} satisfies M ′′ ≻L M ′, a contradiction to the

rank-maximality of M ′.

Thus the conclusion is that wt(M ′) > wt(M), which contradicts the

fact that M is a maximum weight matching in G. �

As mentioned in Sec. 1.5.4, a maximum weight matching in G can be

found in time O(
√
nm log(nW )) time, where n is the number of applicants

and houses, m is the number of acceptable applicant–house pairs, and W is

the largest edge weight, using Gabow and Tarjan’s algorithm [230]. There is

also a strongly polynomial-time algorithm for the problem, due to Fredman

and Tarjan [223], with complexity O(n(m+ n logn)).

Both of these algorithms assume that arithmetic operations involving

edge weights can be carried out in constant time. However in the context of

the above transformation, arithmetic is carried out on numbers of magni-

tude O(nW ), where W = nr−1
1 . Each such arithmetic operation takes time

O((logW )/ logn) if we make the standard assumption that arithmetic on

numbers of magnitude O(n) takes constant time.

This implies that, as observed by Mehlhorn and Michail [447], the true

running times of the maximum weight matching algorithms in the context

of this transformation are O(
√
nm(log(nW ))2/ logn) = O(r2

√
nm logn)

for the Gabow–Tarjan algorithm, and O(rn(m+n log n)) for the Fredman–

Tarjan algorithm.

Irving et al. [317] presented a further algorithm for finding a rank-

maximal matching M in an instance of hat, running in O(r∗nm) time,

where r∗ = r(M) is the regret of M . This complexity was improved

to O(r∗
√
nm logn) by Mehlhorn and Michail [447]. A further improve-

ment was made by Michail [452], yielding a running time of O(min(n +

r∗, r∗
√
n)m), where n is the number of applicants, which is the same as

given by Theorem 8.1. All of these are scaling algorithms based on the

transformation to maximum weight matching described above.
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8.2.2.3 Weighted rank-maximal matchings

In Sec. 7.4, we considered the case where, in a given instance of hat, each

applicant ai ∈ A has a positive weight wt(ai) indicating her priority when it

comes to majority voting. Such a weight can equally represent her priority

in the context of a rank-maximal matching. Based on this observation,

Kavitha and Shah [371] defined a weighted rank-maximal matching, which

is the focus of this section.

Formally, let I be an instance of the Weighted House Allocation problem

with Ties (what), which is the generalisation of hat in which each appli-

cant ai ∈ A has a positive weight wt(ai). Let M be the set of matchings

in I. The weighted profile of a matching M ∈ M, denoted by pw(M), is a

vector 〈pw1 , . . . , pwr∗〉, where r∗ = r(M) such that for each k (1 ≤ k ≤ r∗),

pwk =
∑

{wt(ai) : (ai, hj) ∈ M : rank(ai, hj) = k}.

Intuitively, pwk is the sum of the weights of the applicants who have their

kth-choice house in M . A matching M ∈ M is a weighted rank-maximal

matching if there is no other matching M ′ ∈ M such that pw(M ′) ≻L

pw(M).

Assume that {wt(ai) : ai ∈ A} = {wi : 1 ≤ i ≤ k} for some k ∈ Z
+.

Without loss of generality assume that w1 > w2 > · · · > wk. Kavitha

and Shah [371] gave an algorithm for finding a weighted rank-maximal

matching M in a given instance I of what by reducing I to an instance

J of hat such that an acceptable pair (ai, hj) in I where rank(ai, hj) = p

corresponds to an acceptable pair (ai, hj) in J of rank (p− 1)k + q, where

wq = wt(ai). The authors showed that M can be constructed in time

O(min(n1 + r∗, r∗
√
n1)m) time, where n1 is the number of applicants, m is

the number of acceptable applicant–house pairs in I, and r∗ = r(M) is the

regret of M when viewed as a rank-maximal matching in J .

8.2.2.4 Empirical analysis of rank-maximal matching algorithms

Michail [453] compared experimentally the performance of several al-

gorithms for computing rank-maximal matchings (see Sec. 8.2.2.1 and

Sec. 8.2.2.2), popular matchings (see Sec. 7.2.3), matchings with bounded

unpopularity factor (see Sec. 7.2.7.3) and minimum weight maximum car-

dinality matchings (see Sec. 1.5.4) in an instance of hat.

The algorithms were compared empirically on a number of randomly-

generated problem instances, and in addition, so-called “real data” were
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constructed, generated artifically from the Zillow website1 using the 3-

attribute model (see Sec. 2.10.6). A similar construction was carried out

with information from the National Basketball Association.

A number of attributes of the various algorithms were measured with

respect to multiple randomly-generated / real problem instances, including

running time, size and unpopularity of the computed matching.

Some of the empirical results are quite noteworthy. For example,

(1) concerning the running time of the rank-maximal matching algorithms,

in several cases it was better to use standard breadth-first search to

perform the augmentations rather than the Hopcroft–Karp algorithm;

(2) for sparse instances, rank-maximal matchings and matchings produced

by the bounded unpopularity matching algorithm were noticeably

smaller than maximum cardinality matchings;

(3) certain rank-maximal matching algorithms often computed matchings

with lower unpopularity factors than the bounded unpopularity match-

ing algorithm, even though the latter algorithm was specifically de-

signed for this purpose.

8.2.3 Capacitated House Allocation problem with Ties

A rank-maximal matching can be defined in an instance I of chat in exactly

the same way as for hat. Sng [535] gave an algorithm for computing a rank-

maximal matching in I. Essentially his algorithm is the same as Algorithm

Rank-maximal-HAT, except that an EOU labelling of G′
k is now sought in

a capacitated bipartite graph rather than in the 1–1 case as before. (See

Sec. 7.3.3 for a discussion on obtaining an EOU labelling in the many–one

case.) This led Sng to deduce the following result.

Theorem 8.3 ([535]). Let I be an instance of chat. There is an

O(min(n1 + r∗, r∗
√
n1)m) algorithm2 to find a rank-maximal matching in

I, where n1 is the number of applicants, m is the number of acceptable

applicant–house pairs, and r∗ = r(M) is the regret of M .

Mehlhorn and Michail [447] gave a scaling algorithm for computing a

rank-maximal matching M in a given instance of the many–many general-

1http://www.zillow.com. Accessed 25 May 2012.
2In Ref. [535], the weaker upper bound of O(min(C + r∗, r∗

√
C)m) was given as the

complexity for this algorithm, where C is the total capacity of the houses. The improved
upper bound follows by the remark in Footnote 6 on Page 16.

http://www.zillow.com
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isation of chat in which each applicant can be assigned to multiple houses

up to some positive integral capacity. Hence both applicants and houses

can have non-unitary capacities, but there are preference lists on one side

only (as before, applicants rank houses in order of preference). We refer

to this problem as the Many–Many Capacitated House Allocation problem

with Ties (mm-chat). Here, the definition of a rank-maximal matching

is the same as in the chat case, even though an applicant may be multi-

ply assigned (up to her fixed capacity) in the more general problem. The

complexity of their algorithm is O(r∗nm log(n2/m) logn), where n is the

number of applicants and houses, m is the number of acceptable applicant–

house pairs and r∗ = r(M) is the regret of M .

8.2.4 Hospitals / Residents problem with Ties

The concept of a rank-maximal matching may also be defined in an instance

I of hrt. In order to extend the definition from chat to hrt, we first

require to redefine the regret of a matching M in I. This quantity, denoted

r(M), is the maximum rank of an assignee of an agent in M , taken over all

assignees of all agents. Formally r(M) is defined as follows:

r(M) = max({rank(ri, hj) : (ri, hj) ∈ M} ∪ {rank(hj , ri) : (ri, hj) ∈ M}).

The profile of a matching M in I, denoted3 pI(M), is now a vector

〈p1, . . . , pr∗〉, where r∗ = r(M) is the regret of M , and for each k

(1 ≤ k ≤ r∗),

pk = |{(ri, hj) ∈ M : rank(ri, hj) = k}|+|{(ri, hj) ∈ M : rank(hj , ri) = k}|.

Intuitively, pk is the sum, taken over each agent ai ∈ R∪H , of the number

of kth-choice assignees (possibly 0) of ai in M . The linear order ≻L over

profiles is as defined for the chat case in Sec. 8.2.1. With these defini-

tions, we can now define a matching M to be rank-maximal if pI(M) is

lexicographically maximum, taken over all matchings in I.

Suppose firstly that I is an instance of smti. Huang and Kavitha [295]

gave an efficient algorithm for computing a rank-maximal matching in I

by using their more general algorithm for the weight-maximal matching

problem (see Sec. 8.4). Specifically, they proved the following result.

3It will be useful in this section to indicate the instance I in which the profile of M is
defined, hence the subscript on p(M) here.
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Theorem 8.4 ([295]). Let I be an instance of smti. There is an

O(r∗
√
nm logn) algorithm to find a rank-maximal matching in I, where

n is the size of I, m is the number of acceptable man–woman pairs in I,

and r∗ = r(M) is the regret of M .

We now turn to the case that I is a general instance of hrt. In this case,

a rank-maximal matching in I can be found by “cloning” the hospitals in

I to create an smti instance I ′, and then by invoking Theorem 8.4. This

procedure is similar to that described in the proof of Theorem 3.11, but

with one subtle difference involving the construction of the men’s lists in

I ′, as compared to their construction in the case of Theorem 3.11.

Proposition 8.5. Given an instance I of hrt, we may construct in O(n1+

cmaxm) time an instance I ′ of smti such that a matching M in I can be

transformed in O(cmaxm) time to a matching M ′ in I ′ such that pI(M) =

pI′(M ′), and conversely, where n1 is the number of residents, cmax is the

maximum hospital capacity and m is the number of acceptable resident–

hospital pairs in I.

Proof. Let I be an instance of hrt in which R = {r1, r2, . . . , rn1
} is the

set of residents and H = {h1, h2, . . . , hn2
} is the set of hospitals. Let cj be

the capacity of hospital hj ∈ H .

We form an instance I ′ of smti as follows. Each resident in I corresponds

to a man in I ′. Each hospital hj ∈ H gives rise to cj women (hospital

“clones”) in I ′, denoted by h1
j , h

2
j , . . . , h

cj
j , each of whom has the same

preference list as hj in I ′. Each man ri ∈ R starts off with the same

preference list in I ′ as he has in I. We then replace each entry hj on his

list by the cj women h1
j , h

2
j , . . . , h

cj
j . If hj was involved in a tie in ri’s list

in I, then these cj women are simply added to the corresponding tie in ri’s

list in I ′. Otherwise we form a new tie in ri’s list in I ′, comprising these cj
women, at the corresponding point at which hj appeared on ri’s list in I.

Now let M be a matching in I. We form a matching M ′ in I ′ as follows.

For each hj ∈ H , let rj,1, rj,2, . . . , rj,xj
be the set of residents assigned to

hj in M , where xj ≤ cj . Add (rj,k, h
k
j ) to M ′ (1 ≤ k ≤ xj). Clearly

pI(M) = pI′(M ′).

Conversely let M ′ be a matching in I ′. We form a matching M in I

as follows. For each (ri, h
k
j ) ∈ M ′, add (ri, hj) to M . Clearly pI′(M ′) =

pI(M).

The stated time complexities follow from the fact that I ′ has O(n1+C)

agents and O(cmaxm) acceptable man–woman pairs, where C is the total

capacity of the hospitals in I. �
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Corollary 8.6. Given an instance I of hrt, we may construct in O(n1 +

cmaxm) time an instance I ′ of smti such that a rank-maximal matching M ′

in I ′ can be transformed in O(cmaxm) time to a rank-maximal matching M

in I, where n1 is the number of residents, cmax is the maximum hospital

capacity and m is the number of acceptable resident–hospital pairs in I.

The following result is an immediate consequence of Corollary 8.6 and The-

orem 8.4.

Theorem 8.7. Let I be an instance of hrt. There is an

O(r∗
√
n1 + Ccmaxm log(n1 +C)) algorithm to find a rank-maximal match-

ing in I, where n1 is the number of residents, m is the number of acceptable

resident–hospital pairs, C is the total capacity of the hospitals, cmax is the

maximum capacity of a hospital in I, and r∗ = r(M) is the regret of M .

An alternative method for finding a rank-maximal matching in an hrt

instance I is to use a transformation to the Weighted Upper Degree Con-

strained Subgraph problem (wudcs) (the weighted version of udcs as de-

fined in Sec. 1.2), as observed by Sng [535]. The definition of the weight

function is similar to that described in Sec. 8.2.2.2 for hat.

Let R be the set of residents and let H be the set of hospitals in I, and

let n = |R|+ |H |. Let G = (V,E) be the underlying (capacitated) graph of

I (with capacity function c′ : R∪H −→ Z
+, where c′(ri) = 1 for all ri ∈ R

and c′(hj) = cj for all hj ∈ H) and let r be the maximum rank of an agent

aj in a given agent ai’s preference list, taken over all agents ai in I.

Define a weight function wt : E −→ N as follows. Given an edge

(ri, hj) in G, let wt(ri, hj) = nr−p + nr−q, where rank(ri, hj) = p and

rank(hj , ri) = q. It turns out that a maximum weight matching in 〈G, c′〉
is a rank-maximal matching in I.

Proposition 8.8 ([535]). Let I be an instance of hrt and let wt be the

weight function in the underlying capacitated graph G = (V,E) with capac-

ity function c′ as defined above. Then a maximum weight matching in G is

a rank-maximal matching in I.

Proof. Let M be a maximum weight matching in 〈G, c′〉 with respect

to wt. Suppose that M ′ ≻L M for some matching M ′ in I. Let p(M) =

〈p1, . . . , pl1〉 and p(M ′) = 〈q1, . . . , ql2〉. Then either (i) l2 > l1 and pk = qk
for 1 ≤ k ≤ l1, or (ii) there exists some s (1 ≤ s ≤ l2) such that l1 ≥ s,

pk = qk (1 ≤ k ≤ s − 1) and qs > ps. In case (i), we let s = min{k : k >
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l1 ∧ qk > 0} and let pk = 0 (l1 + 1 ≤ k ≤ s). Also let l′1 = s. In case (ii),

we let l′1 = l1.

Letting wt(M) denote the total weight of the edges in M , we obtain

the following inequalities using a similar argument to that in the proof of

Proposition 8.2:

wt(M) ≤
s

∑

k=1

pkn
r−k +





l′1
∑

k=s+1

pk



nr−s−1 (8.3)

wt(M ′) =

s−1
∑

k=1

pkn
r−k + qsn

r−s +

l2
∑

k=s+1

qkn
r−k

≥
s

∑

k=1

pkn
r−k + nr−s +

l2
∑

k=s+1

qkn
r−k (8.4)

Thus, from Inequalities 8.3 and 8.4, wt(M ′) > wt(M) unless
∑l′1

k=s+1 pk ≥
n. In this case, pk = qk = 0 for 1 ≤ k ≤ s− 1, ps = 0 and

∑l′1
k=s+1 pk = n.

In fact, the only way that wt(M) ≥ wt(M ′) can occur is if (i) ps+1 = n

and pk = 0 for s+2 ≤ k ≤ l′1, and (ii) qs = 1 and qk = 0 for s+1 ≤ k ≤ l2.

Indeed, wt(M) = wt(M ′) in this case.

Hence
∑l2

k=1 qk = 1. But this is impossible, since M ′ is a matching and

thus
∑l2

k=1 qk must be an even quantity. Hence wt(M ′) > wt(M), which

contradicts the fact that M is a maximum weight matching in G. �

A maximum weight matching can be found in time O((n1 +

C)min(m logn, n2) using Gabow’s algorithm [226], where n1 = |R|, C is

the total capacity of the hospitals, n = |R| + |H | and m = |E|, assuming

O(n) edge weights. However due to the large edge weights involved, the true

complexity of Gabow’s algorithm in 〈G, c′〉 is O(r(n1+C)min(m log n, n2)).

Hence in general Theorem 8.7 gives a stronger complexity bound.

In this section, we have considered rank-maximal matchings in instances

of smi, hr and their variants involving ties. We remark that in smi, nor-

mally the stability of a matching is the key priority. We can however com-

bine stability with rank-maximality to obtain the notion of a rank-maximal

stable matching in an smi instance I. To define this, let S be the set of

stable matchings in I. Then M ∈ S is a rank-maximal stable matching4 if

there is no M ′ ∈ S such that M ′ ≻L M . Irving et al. [320] showed that a

rank-maximal stable matching in I can be computed in O(nm2 log2 n) time,
4Feder [202] referred to a rank-maximal stable matching as a lexicographic stable

matching.
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where n is the size of I and m is the number of acceptable man–woman

pairs in I. This bound follows by transforming to the problem of finding a

minimum weight stable matching (see Sec. 1.3.4.2). Feder [202] improved

the time bound to O(n1/2m3/2) using a transformation to weighted 2-sat.

8.2.5 Stable Roommates with Ties and Incomplete lists

Recall from Sec. 1.4.3 that an instance of sr need not admit a stable match-

ing [235]. To cope with the possible non-existence of a stable matching, var-

ious alternative optimality criteria have been suggested in the literature: for

example maximum stable matchings (Sec. 4.3.4), “almost stable” match-

ings (Sec. 4.6), Pareto optimal matchings (Sec. 6.5) and popular matchings

(Sec. 7.5).

Rank-maximality provides a further optimality criterion that can be

defined in the context of sr, and indeed in the more general srti setting,

as an alternative to stability. It is straightforward to extend the definition

of a rank-maximal matching from the hat case to srti. To do this, we

redefine the regret and profile of a matching. Let I be an instance of srti

and let M be a matching in I. The regret of M in I, denoted r(M), is

the maximum rank of an agent’s partner in M , taken over all agents in I.

Formally r(M) is defined as follows:

r(M) = max({rank(ai, aj) : {ai, aj} ∈ M}.

Let AM denote the set of agents who are assigned in M . The profile of M

in I, denoted p(M), is now a vector 〈p1, . . . , pr∗〉, where r∗ = r(M) is the

regret of M , and for each k (1 ≤ k ≤ r∗),

pk = |{ai ∈ AM : rank(ai,M(ai)) = k}|.

Intuitively, pk is the number of agents who have their kth-choice partner in

M . The linear order ≻L is as defined for the hat case in Sec. 8.2.1. With

these definitions, we can now define a matching M to be rank-maximal if

p(M) is lexicographically maximum, taken over all matchings in M.

Abraham et al. [27] observed that, given an instance I of srti, a rank-

maximal matching can be found using a transformation to the problem

of computing a maximum weight matching in a general weighted graph.

To see this, let G = (V,E) be the underlying graph of I, and let r be

the maximum rank of an agent aj in a given agent ai’s preference list,

taken over all agents ai in I. Also, let A be the set of agents in I, where

n = |A|. Define a weight function wt : E −→ N as follows. Given an edge
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e = {ai, aj} ∈ E, let wt(e) = nr−p + nr−q, where rank(ai, aj) = p and

rank(aj , ai) = q.

The following proposition, whose proof is similar to that of Proposition

8.8 and is omitted, indicates that a maximum weight matching in G is a

rank-maximal matching in I.

Proposition 8.9 ([318]). Let I be an instance of srti and let wt be the

weight function in the underlying graph G = (V,E) as defined above. Then

a maximum weight matching in G is a rank-maximal matching in I.

A maximum weight matching in a weighted graph can be found in

time O(
√

nα(n,m)m log3/2 n) time using Gabow and Tarjan’s algorithm

[231], where n is the number of vertices and m is the number of edges,

assuming O(n) edge weights. However due to the large edge weights in-

volved, the true complexity of Gabow and Tarjan’s algorithm in G is

O(r
√

nα(n,m)m log3/2 n). We summarise this discussion as follows.

Theorem 8.10 ([27]). Let I be an instance of srti. There is an

O(r
√

nα(n,m)m log3/2 n) algorithm5 to find a rank-maximal matching in

I, where n is the number of agents, m is the number of acceptable pairs

of agents and r is the maximum rank of an agent aj in a given agent ai’s

preference list, taken over all agents ai in I.

At present it is open as to whether a combinatorial algorithm for com-

puting a rank-maximal matching in a given srti instance, generalising Al-

gorithm Rank-maximal-HAT, can be found. However, such a generalisation

does exist if I is an instance of srti-grp (see Sec. 4.7.3, and Theorem 4.37)

in particular).

Finally, as in Sec. 8.2.4, we can combine the notions of a stable matching

and a rank-maximal matching in instances of sr and its variants. As men-

tioned in Sec. 4.9, the complexity of the problem of finding a rank-maximal

stable matching, given a solvable instance of sr, is currently open.

8.3 Greedy and generous maximum matchings

8.3.1 Introduction

Recall the definitions of a greedy maximum matching and a generous maxi-

mum matching from Sec. 1.5.6. In this section we describe polynomial-time

5The weaker bound of O(r2
√

nα(n,m)m log3/2 n) was given by Abraham et al. [27].
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algorithms for computing a greedy maximummatching and a generous max-

imum matching in various problem instances. We begin with the chat case

and firstly outline some notation and terminology.

Let I be an instance of chat and let M denote the set of matchings

in I. Denote by A the set of applicants, by H the set of houses in I and

by r the maximum rank of a house in an applicant’s list, taken over all

applicants in I. Let G = (V,E) be the underlying capacitated graph of I,

with capacity function c′ : A ∪ H −→ Z
+, where c′(ai) = 1 for all ai ∈ A

and c′(hj) = cj for all hj ∈ H . Denote by β+(G) the size of a maximum

matching in 〈G, c′〉.
For each k (0 ≤ k ≤ β+(G)), let Mk denote the set of matchings in

G of size k. For the special case that k = β+(G), we also denote Mk

by M+.

We define a relation ≺R on profiles as follows. Let ρ1 = 〈p1, . . . , pl1〉 and
ρ2 = 〈q1, . . . , ql2〉 be two profiles. Then, we say that ρ1 right-dominates ρ2,

denoted ρ1 ≺R ρ2, if either (i) l1 < l2, or (ii) l1 = l2 and there exists some

s (1 ≤ s ≤ l1) such that ps < qs and pk = qk (s+ 1 ≤ k ≤ l1). Clearly ≺R

is a strict linear order. This linear order may be extended to M as follows.

If M,M ′ ∈ M, we say that M right-dominates M ′, denoted M ≺R M ′, if

p(M) ≺R p(M ′).

Let k (0 ≤ k ≤ β+(G)) be given. A matching M ∈ Mk is said to be a

greedy k-matching if there is no matching M ′ ∈ Mk such that M ′ ≻L M .

In the case that k = β+(G), Mk is a greedy maximum matching. Similarly

a matching M ∈ Mk is said to be a generous k-matching if there is no

matching M ′ ∈ Mk such that M ′ ≺R M . In the case that k = β+(G), Mk

is a generous maximum matching.

To illustrate some of these definitions, consider the ha instance I3
shown in Fig. 1.3. Then M = {(a1, h1), (a2, h2)} is a greedy 2-matching

in I3 (and in fact a rank-maximal matching) with profile 〈2, 0〉, whilst

M ′ = {(a1, h3), (a2, h1), (a3, h2)} is a greedy 3-matching in I3 (and indeed

a greedy maximum matching) with profile 〈1, 2〉.
This section is organised as follows. We begin in Sec. 8.3.2 by describing

a polynomial-time algorithm for computing a greedy maximum matching

in a given instance of chat. The amendments that should be made to

this algorithm in order to find a generous maximum matching in chat are

outlined in Sec. 8.3.3. Sec. 8.3.4 describes how to find greedy maximum

and generous maximum matchings in other problem instances, including

hrt, srti, and mm-chat.
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a1 : h1 h2

a2 : h1 h2

a3 : h4 h3

a4 : h4

M3 = {(a1, h1), (a2, h2), (a3, h4)}
M1

4 = {(a1, h2), (a2, h1), (a3, h3), (a4, h4)}
M2

4 = {(a1, h1), (a2, h2), (a3, h3), (a4, h4)}

Fig. 8.1 An instance I′ of ha and three particular matchings in I ′ due to Sng [535]

8.3.2 Finding a greedy maximum matching

In this subsection we present an efficient algorithm for finding a greedy

maximum matching in the chat instance I defined in the previous sub-

section. This algorithm was described by Sng [535] and extends an earlier

algorithm that was derived for the hat case by Irving [313]. Irving [313] in-

troduced all the relevant concepts in the hat context that were built upon

by Sng’s algorithm for chat.

The algorithm is essentially based on the following inductive strategy:

for each k (0 ≤ k ≤ β+(G) − 1), assume that we have found a greedy k-

matchingMk, and find a “suitable” augmenting path P in order to augment

Mk to a greedy (k + 1)-matching Mk+1. The starting point is the empty

matching. Of course it is not obvious that such a path P exists, nor is it

clear how to find P .

To illustrate these issues, consider the ha instance I ′ and the three

matchings M3, M1
4 and M2

4 in I ′, due to Sng [535], shown in Fig. 8.1.

Clearly M3 is a greedy 3-matching in I ′. However M1
4 is a greedy 4-

matching that cannot be obtained from M3 by augmenting along a single

augmenting path. On the other hand M2
4 is a different greedy 4-matching

in I ′ that is obtainable from M3 via a single augmenting path.

Returning to a general chat instance I, it turns out that a single aug-

menting path can always be found that enables a greedy k-matching to

be augmented to a greedy (k + 1)-matching (0 ≤ k ≤ β+(G) − 1), as the

following lemma, due to Irving [313] and Sng [535], indicates.

Lemma 8.11 ([313,535]). Let I be an instance of chat and let β+(G)

denote the size of a maximum matching in the underlying capacitated bi-

partite graph G. Let k (0 ≤ k ≤ β+(G)−1) be given and let Mk be a greedy

k-matching in I. Then there is a greedy (k + 1)-matching Mk+1 that can

be obtained from Mk via an augmenting path.
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Algorithm 8.2 Algorithm Greedy-Max [313, 535]

Require: chat instance I
Ensure: return a greedy maximum matching M in I
1: M := ∅;
2: k := 0; {k is the cardinality of M}
3: loop

4: P := Max-Aug(I ,k,M);
5: if P 6= null then

6: M := M ⊕ P ;
7: else

8: return M ; {a greedy maximum matching}
9: end if

10: k++; {M is a greedy k-matching}
11: end loop

We can now present a pseudocode description of Irving and Sng’s greedy

maximum matching algorithm. Algorithm Greedy-Max, shown in Algorithm

8.2, starts off with the empty matching and enters a loop that repeatedly

tries to augment the current greedy k-matching M into a greedy (k + 1)-

matching, using a single augmenting path P , for k ≥ 0. The path P will

be found by an auxiliary procedure called Algorithm Max-Aug, which we

will describe shortly. If this procedure returns a null path, then M was

already a greedy maximum matching, so Algorithm Greedy-Max returns

M . Otherwise M is augmented along P .

What now requires further explanation is the particular choice of aug-

menting path P that will enable us to augment a greedy k-matching to

obtain a greedy (k + 1)-matching. It turns out that we seek a maximum

profile augmenting path. In order to define this concept we require some

additional notation.

Given a profile ρ = 〈p1, p2, . . . , pt〉, and given a positive integer α such

that 1 ≤ α ≤ t, define ρ+ α to be the profile with vector

〈p1, . . . , pα−1, pα + 1, pα+1, . . . , pt〉

(that is, one more applicant has her αth choice in ρ+α than in ρ). Similarly

ρ− α is the profile with vector

〈p1, . . . , pα−1, pα − 1, pα+1, . . . , pt〉

(so one fewer applicant has her αth choice in ρ−α as compared to ρ). Note

that if α = t then any zero entries from the rightmost end of ρ− α should

be deleted until the rightmost element is non-zero.
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Let M be a matching in I. Define a house to be exposed relative to M

if |M(hj)| < cj . Now suppose that P = 〈ai0 , hi0 , ai1 , hi1 , ..., ait , hit〉 is an

alternating path6 in G from an exposed applicant vertex ai0 to a (not neces-

sarily exposed) house vertex hit , for some t ≥ 0, such that (ais , his−1
) ∈ M

for 1 ≤ s ≤ t. We then define the profile of P to be7

p(P ) = Or + rank(ai0 , hi0) + rank(ai1 , hi1) + . . .+ rank(ait , hit)

−rank(ai1 , hi0)− rank(ai2 , hi1)− . . .− rank(ait , hit−1
)

Note that if the rightmost entry in p(P ) is zero, it should be deleted (and

this rule applied recursively until the rightmost entry is non-zero). It follows

that if P is an augmenting path, then p(P ) corresponds to the net change

in the profile of M if we augment M along P .

For each house hj ∈ H , we define the L-value of hj relative to M ,

denoted by L(hj), to be the maximum (with respect to ≻L) profile taken

over all alternating paths from an exposed applicant vertex ending at hj .

We say that an alternating path P is a maximum profile augmenting path

relative toM if P is an augmenting path, and p(P ) = max {L(hj) : hj ∈ H}
where max is with respect to the ≻L order on profiles.

Irving [313] and Sng [535] proved that a maximum profile augmenting

path is key to transforming a greedy k-matching into a greedy (k + 1)-

matching.

Lemma 8.12 ([313,535]). Let I be an instance of chat and let β+(G)

denote the size of a maximum matching in the underlying capacitated bi-

partite graph G. Let k (0 ≤ k ≤ β+(G)−1) be given and let Mk be a greedy

k-matching in I. Let P be a maximum profile augmenting path relative to

Mk. Then Mk+1 = Mk ⊕ P is a greedy (k + 1)-matching.

We now present Algorithm Max-Aug, due to Irving [313] and Sng [535],

given in Algorithm 8.3, for finding a maximum profile augmenting path,

or reporting that none exists, relative to a matching M in I. (Here, and

henceforth in this subsection, when reasoning about profiles, “maximum”

is always with respect to ≻L.) This algorithm is a variant of the Bellman–

Ford algorithm for finding shortest paths in a graph (see, e.g., Ref. [156]).

Algorithm Max-Aug will be passed three parameters, namely a chat in-

stance I, an integer k (where 0 ≤ k ≤ β+(G) and G is the underlying

6Although I is an instance of chat, it turns out that we can restrict attention to
alternating paths in which no house is repeated in P .
7In the definition of the profile of P , the operations of + and − are assumed to associate

to the left.
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Algorithm 8.3 Algorithm Max-Aug [313, 535]

Require: chat instance I , an integer k and a greedy k-matching M
Ensure: return P , a maximum profile augmenting path relative to M ,

or null if M is a maximum matching
1: {Initialisation}
2: for each house hj ∈ H do

3: l(hj) := Or ;
4: pred(hj) := null;
5: for each exposed applicant ai ∈ A such that (ai, hj) ∈ E do

6: t := rank(ai, hj);
7: ρ := Or + t;
8: if ρ ≻L l(hj) then
9: l(hj) := ρ;

10: pred(hj) := ai;
11: end if

12: end for

13: end for

14: {Main loop}
15: for p in 1..k do

16: for each (ai, hj) ∈ E\M such that ai is assigned in M do

17: ρ := l(M(ai)) + rank(ai, hj)− rank(ai,M(ai));
18: if ρ ≻L l(hj) then
19: l(hj) := ρ;
20: pred(hj) := ai;
21: end if

22: end for

23: end for

24: {Final phase}
25: ρ := max≻L({Or} ∪ {l(hj) : hj ∈ H is exposed});
26: if ρ ≻L Or then

27: hq :∈ argmax≻L{l(hj) : hj ∈ H is exposed};
28: P := augmenting path obtained by following pred values and

matching edges from hq to an exposed applicant;
29: return P ;
30: else

31: return null; {no augmenting path exists}
32: end if

graph of I) and a greedy k-matching M in I. If M is already a maximum

matching then the algorithm returns null to signify that no augmenting

path exists. Otherwise a maximum profile augmenting path P relative to

M is returned.

The algorithm consists of three phases: an initialisation phase (lines

2–13), the main loop (lines 15–23) and the final phase (lines 25–32). A
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fundamental loop invariant that holds is that, after the pth iteration of the

main loop (0 ≤ p ≤ k), l(hj) holds the maximum profile of an alternating

path starting from an exposed applicant and ending at hj , and of length at

most 2p+1, where the case that p = 0 refers to the point directly after the

end of the initialisation phase.

For each house hj ∈ H , the algorithm uses two variables, namely l(hj)

and pred(hj). The first of these, l(hj), will hold the maximum profile of an

alternating path so far computed relative to M , starting from an exposed

applicant and ending at hj . The second variable, pred(hj), will hold the

predecessor of hj on this alternating path.

The initialisation of these variables is as follows. Variable l(hj) is ini-

tialised to be the profile Or+t, where t is the minimum value of rank(ai, hj)

taken over all unassigned applicants such that (ai, hj) ∈ E (assuming that

such an applicant exists). Variable pred(hj) is then assigned to equal an

applicant ai where rank(ai, hj) = t. If no such applicant exists then l(hj)

is initialised to Or and pred(hj) is initialised to null.

The main loop has k iterations, where k = |M |. It uses an edge relax-

ation operation similar to that of the Bellman–Ford algorithm, but bases

this operation in terms of the order ≻L. The edge relaxation operation

is defined in lines 17-21 of the algorithm. Let ai be any applicant vertex

assigned in M and let (ai, hj) ∈ E\M . Also, let P = 〈az , . . . ,M(ai)〉 be an
alternating path relative to M , starting from an exposed applicant vertex

az and ending at M(ai), whose profile is equal to l(M(ai)). The essence of

the edge relaxation operation is the following: if the profile of the alternat-

ing path P ′ = 〈az, ...,M(ai), ai, hj〉 left-dominates l(hj), then we update

l(hj) to be the profile of P ′ and similarly update the predecessor of hj to

be ai. As in the case of the Bellman–Ford algorithm, as the main loop

iterates it allows for successively longer alternating paths to be checked to

determine whether improvements in profile (relative to ≻L) are possible.

The fundamental loop invariant mentioned above would imply that once

the main loop terminates, for each house hj ∈ H , l(hj) holds the maximum

profile of an alternating path starting from an exposed applicant and ending

at hj , and of length at most 2k + 1. Since |M | = k, the length restriction

can be dropped, and hence the claim is that l(hj) = L(hj) at this point.

Irving [313] and Sng [535] proved that this is indeed the case.

Lemma 8.13 ([313,535]). At the end of the main loop of Algorithm

Max-Aug, l(hj) = L(hj) for each house vertex hj ∈ H.



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

8.3. Greedy and generous maximum matchings 403

We now enter the final phase of the algorithm. We let ρ be the maximum

profile l(hj), taken over all exposed hj ∈ H , or Or if no exposed hj ∈ H

exists. If ρ = Or then this implies that M admits no augmenting path,

so null is returned. Otherwise we let hq be an exposed house such that

ρ = l(hq), and return the augmenting path P that is obtained by tracing

back the pred values and the edges in M alternately, starting at hq and

terminating at an exposed applicant. Sng [535] proved that this traceback

cannot cycle. The proof also indicates that, as claimed in Footnote 6, we

lose no generality in considering alternating paths that have no repeated

house. These observations, together with Lemmas 8.12 and 8.13, imply the

correctness of Algorithm Greedy-Max.

We now consider the time complexity of the algorithm. Algorithm

Greedy-Max performs β+(G) = O(n1) calls to Algorithm Max-Aug, where

n1 is the number of applicants. In the latter algorithm, each single opera-

tion involving a profile (assignment, addition, subtraction or comparison)

takes O(r) time. The initialisation phase thus has O(rn1n2) complexity,

where n2 is the number of houses. The main loop iterates k times, where

k = |M |. Within an iteration of the main loop, the inner loop iterates

O(m) times, where m = |E|. Thus the main loop has overall complex-

ity O(rn1m). The final phase involves computing ρ, which has O(rn2)

complexity, and P , which takes O(m) time, so overall the complexity for

this phase is O(rn2 +m). Hence overall Algorithm Max-Aug has complex-

ity O(rn1m), which gives an overall complexity of O(rn2
1m) for Algorithm

Greedy-Max.

The following theorem summarises the above observations regarding the

correctness and complexity of Algorithm Greedy-Max.

Theorem 8.14 ([313,535]). Let I be an instance of chat. Algorithm

Greedy-Max finds a greedy maximum matching in I in O(rn2
1m) time, where

n1 is the number of applicants, m is the number of acceptable applicant–

house pairs, and r is the maximum rank of a house in an applicant’s list,

taken over all applicants.

A straightforward refinement to the algorithm is to observe that if no house

hj ∈ H has an improvement in l(hj) during an iteration of the main loop,

then no further improvements to the l(hj) values will be possible and the

main loop can terminate at that point.

Irving [313] and Sng [535] also observed that Algorithm Greedy-Max

gives an alternative method for computing a rank-maximal matching (albeit
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with a poorer time complexity than given by Theorem 8.3). This approach

hinges on the following result.

Lemma 8.15 ([313,535]). Let I be an instance of chat, let G be the

underlying capacitated bipartite graph, and let β+(G) denote the size of a

maximum matching in G. For each k (1 ≤ k ≤ β+(G)), let Mk be a greedy

k-matching in I, and let ρk be the profile of Mk. Define ρβ+1 = Or, where

β = β+(G) and r is the maximum rank of a house in an applicant’s list,

taken over all applicants in I. Let s be the minimum integer (1 ≤ s < β)

such that (i) for each k (1 ≤ k ≤ s− 1), ρk+1 ≻L ρk, and (ii) ρs ≻L ρs+1

(such an s is bound to exist because of ρβ+1). Then Ms is a rank-maximal

matching in I.

8.3.3 Finding a generous maximum matching

Irving [313] and Sng [535] showed how to adapt Algorithm Greedy-Max in

order to find a generous maximum matching in I. In this subsection we

outline the necessary modifications. The pseudocode of Algorithm Greedy-

Max itself is unchanged. In the context of AlgorithmMax-Aug (which should

strictly speaking be renamed Algorithm Min-Aug), we will be now seeking

a minimum (with respect to ≺R) profile augmenting path relative to M .

We define this as follows.

For each house hj ∈ H , we define the R-value of hj relative to M ,

denoted by R(hj), to be the minimum (with respect to ≺R) profile taken

over all alternating paths from an exposed applicant vertex ending at hj .

We say that an alternating path P is a minimum profile augmenting path

relative toM if P is an augmenting path, and p(P ) = min {R(hj) : hj ∈ H}
where min is with respect to the ≺R order on profiles.

Variable l(hj) should now be denoted r(hj) and will hold the minimum

profile of an alternating path so far computed relative to M , starting from

an exposed applicant and ending at hj . Let O′
r be the vector 〈p1, . . . , pr〉,

where pk = 0 (1 ≤ k ≤ r − 1) and pr = n+ 1. Then p(M ′) ≺R O′
r, for any

matching M ′ in I.

Throughout the pseudocode of Algorithm Max-Aug, the following

changes should be made:

• l(hj) should be replaced by r(hj);

• Or should be replaced by O′
r;

• max should be replaced by min;

• ≻L should be replaced by ≺R.
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Irving [313] and Sng [535] modified the proof of correctness for Algo-

rithm Greedy-Max for the case of generous maximum matchings and arrived

at the following result.

Theorem 8.16 ([313,535]). Let I be an instance of chat. A generous

maximum matching in I can be found in O(rn2
1m) time, where n1 is the

number of applicants, m is the number of acceptable applicant–house pairs,

and r is the maximum rank of a house in an applicant’s list, taken over all

applicants in I.

8.3.4 Greedy and generous maximum matchings in other

problem contexts

A greedy maximum matching in an instance I of hat may be computed

using a transformation to the Assignment problem, similar to that de-

scribed in Sec. 8.2.2.2. Now, the weight of an edge (ai, hj) such that

rank(ai, hj) = k should be nr
1 + nr−k

1 . It follows by a similar argument

to that in the proof of Proposition 8.2 that a maximum weight match-

ing corresponds to a greedy maximum matching. Analogous remarks ap-

ply if we wish to compute a generous maximum matching — in this case

the required weight is nr
1 − nk−1

1 . As observed by Mehlhorn and Michail

[447], the true running times of the maximum weight matching algorithms

in the context of this transformation (either in the greedy or generous

cases) are O(r2
√
nm logn) for the Gabow–Tarjan algorithm [231], and

O(rn(m + n logn)) for the Fredman–Tarjan algorithm [223].

Mehlhorn and Michail [447] gave a scaling algorithm for computing a

greedy / generous maximum matching in I in time O(r
√
nm logn). A

further improvement was given by Huang and Kavitha, even for the smti

case, using their more general algorithm for the weight-maximal matching

problem (see Sec. 8.4), leading to the following result.

Theorem 8.17 ([295]). Let I be an instance of smti. There are

O(r∗
√
nm logn) algorithms to find a greedy / generous maximum matching

in I, where n is the size of I, m is the number of acceptable man–woman

pairs, and r∗ = r(M) is the regret of M .

Note that a greedy / generous maximum matching in an instance I of

hat may be found be transforming I into an instance I ′ of smti in which

each woman is indifferent between all of the men who find her acceptable,

and by then applying Huang and Kavitha’s algorithms [295] for finding
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a greedy / generous maximum matching in I ′. Comparing Theorem 8.17

with Theorem 8.14, we see that this method for finding a greedy / gen-

erous maximum matching in an instance of hat is faster than Irving and

Sng’s algorithms for the same problem class. However we chose to present

Algorithm Greedy-Max in full for computing a greedy maximum matching

(and indicate the changes required if we wish to compute a generous maxi-

mum matching) because it is conceptually straightforward and illustrates a

fundamental technique for arriving at an optimal matching by augmenting

along a series of optimal augmenting paths.

Sng [535] generalised Algorithm Greedy-Max to the case of hrt (in-

dicating the modifications required if we wish to compute a generous

maximum matching), with no change to the time complexity given by

Theorem 8.14.

In the case of an srti instance I, we assume the notation given in

Sec. 8.2.5. A greedy maximum or generous maximum matching can be

found using a transformation to the problem of computing a maximum

weight matching in a general weighted graph. Given an edge {ai, aj} where

rank(ai, aj) = p and rank(aj , ai) = q, let wt({ai, aj}) = nr + nr−p + nr−q

in the case of a greedy maximum matching, and let wt({ai, aj}) = nr −
np−1−nq−1 in the case of a generous maximum matching. We then obtain a

similar bound for the time taken to compute a greedy maximum or generous

maximum matching as given in Theorem 8.10.

Mehlhorn and Michail [447] also generalised their scaling algorithm to

mm-chat. The definitions of a greedy / generous maximum matching are

the same as in the chat case, but clearly an applicant may be multiply

assigned (up to her fixed capacity) in the more general problem. The com-

plexity of their algorithm is O(rnm log(n2/m) logn), where n is the number

of applicants and houses, m is the number of acceptable applicant–house

pairs and r is the maximum rank of a house in an applicant’s list, taken

over all applicants.

8.4 Weight-maximal matchings

Huang and Kavitha [295] studied weight-maximal matchings in instances

of smti — this concept generalises the notions of a rank-maximal, greedy

maximum and generous maximum matching. Let I be an instance of smti

and let G = (V,E) be the underlying bipartite graph of I. Let U be the

set of men and let W be the set of women in I.
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We are given a tuple of weight functions 〈f1, . . . , fs〉, for some s ≥ 1,

where fk : E −→ {0, 1, . . . , F} for each k (1 ≤ k ≤ s). It is assumed

that F (the largest edge weight) is a constant. Intuitively, weight function

f1 has highest priority, followed by f2, and then f3, etc. Informally, the

problem is to compute a matching M in G such that (i) M is a maximum

weight matching relative to f1, (ii) subject to (i), M is a maximum weight

matching relative to f2, (iii) subject to (i) and (ii), M is a maximum weight

matching relative to f3, etc.

Formally, define the weight-function profile of a matching M in I,

denoted pf(M), to be the vector 〈p1, . . . , ps〉, where pi = fk(M) and

fk(M) =
∑

e∈M fk(e) (1 ≤ k ≤ s). We define a matching M to be

a weight-maximal matching if there is no other matching M ′ such that

pf (M ′) ≻L pf (M). Equivalently, M is weight-maximal if pf (M) is lexico-

graphically maximum, taken over all matchings in I. Define the weighted

regret of M , denoted rw(M), to be the maximum k (1 ≤ k ≤ s) such that

fk(M) > 0.

Let r be the maximum rank of an agent aj in a given agent ai’s pref-

erence list, taken over all agents ai. Huang and Kavitha [295] showed that

weight-maximal matchings can be used to compute profile-based optimal

matchings in I, which can be seen as follows.

• Rank-maximal matchings: let s = r, and for each k (1 ≤ k ≤ r), let fk
be defined as follows. For each edge e = (mi, wj), where mi ∈ U and

wj ∈ W , define fk(e) = δrank(mi,wj),k + δrank(wj ,mi),k, where δp,q is the

Kronecker delta function.

• Greedy maximum matchings: let s = r + 1. Define f1(e) = 1 for all

e ∈ E. For each k (2 ≤ k ≤ r + 1), let fk be defined as follows. For

each edge e = (mi, wj), where mi ∈ U and wj ∈ W , define fk(e) =

δrank(mi,wj),k−1 + δrank(wj ,mi),k−1.

• Generous maximum matchings: let s = r. Define f1(e) = 1 for all

e ∈ E. For each k (2 ≤ k ≤ r), let fk be defined as follows. For

each edge e = (mi, wj), where mi ∈ U and wj ∈ W , define fk(e) =

δ′rank(mi,wj),r−k+1 + δ′rank(wj ,mi),r−k+1, where δ′p,q = 1 if p ≤ q, and

δ′p,q = 0 otherwise.

Huang and Kavitha [295] remarked that a weight-maximal matching

can be computed using a similar transformation to the Assignment prob-

lem to the one described in Sec. 8.2.2.2. Essentially, the s separate weight

functions are combined into a single steeply decreasing weight function,

which ensures that the priorities of the individual weight functions are
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respected. However computing a maximum weight matching in the presence

of such large weights takes O(r2
√
nm logn) time using the Gabow–Tarjan

algorithm [231], and O(rn(m + n logn)) time using the Fredman–Tarjan

algorithm [223], where n is the size of I and m is the number of accept-

able man–woman pairs in I. Huang and Kavitha [295] described a faster

algorithm for computing a weight-maximal matching, which leads to the

following generalisation of Theorems 8.4 and 8.17.

Theorem 8.18 ([295]). Let I be an instance of smti, and let 〈f1, . . . , fs〉
be a given tuple of weight functions, for some s ≥ 1, where fk : E −→
{0, 1, . . . , F} for each k (1 ≤ k ≤ s). There is an O(r∗

√
nm logn) algorithm

to find a weight-maximal matching in I, where n is the size of I, m is

the number of acceptable man–woman pairs in I, and r∗ = rw(M) is the

weighted regret of M .

8.5 Other profile-based optimal matching problems

8.5.1 Rental Market problem

Abraham et al. [19] considered profile-based optimal matchings in the con-

text of the Rental Market problem. We are given an instance of hat in

which the houses intuitively correspond to DVDs that can be rented by the

applicants (customers). There are t time steps 1, 2, . . . , t, and the aim is to

compute t matchings M1,M2, . . . ,Mt in I such that, for each applicant ai
and house hj,

|{Mk : 1 ≤ k ≤ t ∧ (ai, hj) ∈ Mk}| ≤ 1.

That is, a given house (DVD) can be assigned to a given applicant (cus-

tomer) at most once over the t time steps. It is assumed that if a house

is assigned to an applicant at time step k, it is then available for use by

another applicant at time step k + 1.

The authors considered a range of different criteria for an optimal

matching in a given instance of the Rental Market problem. Among these

are rank maximal matchings and generous maximum matchings. They also

proposed both offline and online variants of the problem — in the latter

case, applicants can add or remove elements from their preference lists

between successive time steps. The authors proved theoretical bounds con-

cerning the performance of various optimal matching algorithms for both

the offline and online versions. They also compared the performance of the
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algorithms on real data, noting among other things the total number of

skips that each algorithm encounters (this is the number of higher-ranked

houses that an applicant misses out on in a given matching, taken over all

applicants and over the matchings in all time steps). Interestingly, the au-

thors found that generous maximum matchings performed best with respect

to this particular measure.

8.5.2 Assigning papers to reviewers

Refereed conferences often involve a Programme Committee (PC) which

is collectively in charge of reviewing (or arranging sub-reviewers for) the

submitted papers. Many conference management software systems, such

as EasyChair8, automate the task of assigning papers to reviewers, taking

into account information such as the following:

(1) Reviewers’ interest : each reviewer can specify a level of interest in

reviewing a particular paper;

(2) Reviewers’ expertise: each reviewer can specify their level of expertise

in the topic of a given paper;

(3) Conflicts of interest : each reviewer may have a number of papers for

which she has a conflict of interest;

(4) Coverage: there will be a value of t ≥ 1 such each paper must be

reviewed t times;

(5) Load balancing: each reviewer should be given roughly the same number

of papers. If there are n1 reviewers, n2 papers and each should be

reviewed t times, then each reviewer will be assigned either b or b − 1

papers, where b =
⌈

tn2

n1

⌉

.

In some cases, data mining techniques are used to predict (1) and (2), using

comparisons between keywords from the submitted papers and keywords

from the reviewers’ prior publications. We do not pursue this direction any

further here. We focus on the case where (1) and (2) are given, and are

combined into a single score, or valuation function, which assumes that a

reviewer’s interest level for a given paper will be in close correlation with

their expertise for reviewing that paper.

Formally, the valuation function is defined as follows. Let R be the set

of reviewers, let P be the set of papers, and let ∆ ≥ 1 be some positive

constant. Define v : R × P −→ {0, 1, . . . ,∆} to be the valuation function

8http://www.easychair.org. Accessed 25 May 2012.

http://www.easychair.org
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such that v(ri, pj) denotes the valuation of a given paper pj ∈ P by a given

reviewer ri ∈ R. (The valuation function can also be regarded as a utility

function, and v(ri, pj) > v(ri, pk) implies that ri prefers pj to pk.) We

assume that v(ri, pj) = 0 indicates that either ri has a conflict of interest

for pj , or ri has no interest in, or insufficient expertise for, reviewing pj .

We are thus given a many–many matching problem, where each reviewer

must be assigned b or b−1 papers, and each paper must be reviewed exactly

t times. We refer to the problem of finding an optimal matching in this

context (subject to a suitable definition of optimality) as the Reviewer

Assignment problem (ra).

To give an example from Ref. [242] of the typical dimensions of the

problem, EasyChair was used to assign papers to reviewers for the Design

and Analysis Track of the ESA 2008 conference (the 16th Annual European

Symposium on Algorithms). In this case, n1 = |R| = 14, n2 = |P | = 202,

t = 4, ∆ = 3 and b = 58. Thus in a load-balanced matching of reviewers

to papers, we require to find the minimum integer k such that k reviewers

are assigned b papers and n − k reviewers are assigned b − 1 papers,and

kb+(n1−k)(b−1) ≥ tn2. That is, k = tn2−n1(b−1). In this case k = 10.

There has been a great deal of previous work on modelling and solving

ra, with references appearing in the Artificial Intelligence, Operations Re-

search, Algorithms and Complexity, and Decision Theory literature. The

solution techniques used include heuristics, approximation algorithms, in-

teger programming, polynomial-time algorithms (based on graph match-

ing, network flow and other techniques, both exact and approximate) and

strategy-proof mechanisms. Wang et al. [583] gave a relatively recent survey

of the literature.

We may as well regard the valuation function as giving rise to a pref-

erence list (with ties in general) for each reviewer, as follows. Given a

reviewer ri ∈ R, for each k (1 ≤ k ≤ ∆), let the kth tied batch of papers

in ri’s list comprise those papers pj for which v(ri, pj) = ∆ − k + 1. For

example, suppose that ∆ = 3, n2 = 10 and the following list indicates the

v(r1, pj) values for a particular reviewer r1:

p1 : 0 p2 : 2 p3 : 3 p4 : 1 p5 : 3 p6 : 0 p7 : 0 p8 : 3 p9 : 1 p10 : 0.

Then r1’s preference list is as follows:

r1 : (p3 p5 p8) p2 (p4 p9).

It is useful in this subsection to redefine the notion of rank, such that,

for any reviewer ri ∈ R and for any paper pj ∈ P such that v(ri, pj) > 0,
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Reviewers’ preferences Paper coverage t = 1
r1 : (p1 p2) (p3 p4)
r2 : (p1 p2) (p3 p4)

M1 = {(r1, p1), (r1, p2), (r2, p3), (r2, p4)}
M2 = {(r1, p1), (r1, p3), (r2, p2), (r2, p4)}

Fig. 8.2 An instance of mm-chat together with two matchings due to Garg et al. [242].

rank(ri, pj) = ∆−v(ri, pj)+1. Thus in the above example, rank(r1, p2) = 2

and rank(r1, p9) = 3. The profile of a matching is now defined relative to

this revised definition of rank.

In general, for a given reviewer ri ∈ R, if there are any “missing” values

in the set {v(ri, pj) : pj ∈ P} then we can always introduce a sufficient

number of “dummy” papers that need to be reviewed 0 times in order to

“pad out” ri’s preference list so that the kth tied batch corresponds to the

papers pj for which rank(ri, pj) = k. For simplicity, in what follows we

assume that such dummy papers are not required.

Given the remarks above, it is clear that an instance of ra can be

modelled as an mm-chat instance (as defined on Page 391), in which the

applicants correspond to reviewers and the houses correspond to papers.

Each reviewer ri ∈ R has capacity c(ri) = b, and each paper pj ∈ P has

capacity c(pj) = t. In such a setting it is natural to consider profile-based

optimal matchings. In general, we discount rank-maximality as a potential

solution criterion because we assume that the overriding requirement is to

ensure that every paper is reviewed the required number of times. This

implies that maximising the cardinality of the matching should be the top

priority. In particular, we will restrict attention to the set M+ of maximum

matchings in I (each of which ideally has size tn2, meaning that all papers

are reviewed sufficiently many times). However there is a sense in which

a greedy / generous maximum matching, or a maximum utility maximum

cardinality matching need not be fair to all reviewers, as observed by Garg

et al. [242].

To illustrate what we mean, consider the mm-chat instance I ′ and the

two matchings M1 and M2 shown in Fig. 8.2, due to Garg et al. [242].

Then p(M1) = p(M2) = 〈2, 2〉, and each of M1 and M2 has total utility

6. Hence each of M1 and M2 is a greedy maximum, generous maximum

and maximum utility maximum cardinality matching in I ′. However M2 is

fairer overall, giving each reviewer one first-choice paper and one second-

choice paper, whilst M1 favours r1 at the expense of r2. Hence a tighter
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definition of optimality is required if we are to truly optimise the overall

social welfare of the reviewers.

Garg et al. [242] gave an alternative definition of an optimal matching,

called a leximin optimal matching, that better models the idea of fairness.

In order to define this concept, we require some preliminary definitions.

Let I be an instance of mm-chat and let M be a maximum matching in I.

Given a resident ri ∈ M , define the profile of M for ri, denoted pri(M), to

be a ∆-tuple 〈q1, q2, . . . , q∆〉, where, for each k (1 ≤ k ≤ ∆),

qk = |{(ri, pj) ∈ M : rank(ri, pj) = k}.

Hence, relative to the mm-chat instance I ′ illustrated in Fig. 8.2,

pr1(M1) = 〈2, 0〉 and pr2(M1) = 〈0, 2〉, whilst pr1(M2) = pr2(M2) = 〈1, 1〉.
The concept of a leximin optimal matching was defined by Garg et

al. [242] with respect to two models of preference over profiles, namely

lexicographic preferences and weighted preferences. We consider each of

these models separately. In what follows, we use the term profile to mean

any ∆-tuple of integers ρ = 〈q1, q2, . . . , q∆〉, and we use the term meta-

profile to mean any n1-tuple of profiles 〈ρ1, ρ2, . . . , ρn1
〉. In practice, a

meta-profile will contain the profile of a given matching for each of the n1

reviewers.

• Lexicographic preferences. Given a meta-profile P = 〈ρ1, ρ2, . . . , ρn1
〉,

define sort≻L
(P) to be the sorted meta-profile 〈ρπ1

, ρπ2
, . . . , ρπn1

〉, where
π is a permutation of 1, 2, . . . , n1, such that, for each k (1 ≤ k ≤ n1 − 1),

either ρπk+1
≻L ρπk

or ρπk+1
= ρπk

.

The definition of sort≻L
(P) ensures that the profiles are ordered from

left to right as “worst” to “best” under ≻L. For example, with respect to

the mm-chat instance I ′ illustrated in Fig. 8.2, if ρ1 = pr1(M1) = 〈2, 0〉
and ρ2 = pr2(M1) = 〈0, 2〉, then sort≻L

(〈ρ1, ρ2〉) = 〈ρ2, ρ1〉.
Given two (not necessarily sorted) meta-profiles P1 = 〈σ1, . . . , σn1

〉 and
P2 = 〈σ′

1, . . . , σ
′
n1
〉, we say that P1 ≻L P2 if there exists some s (1 ≤ s ≤

n1) such that σk = σ′
k (1 ≤ k ≤ s− 1) and σs ≻L σ′

s.

For example, if P1 = 〈ρ2, ρ1〉, where ρ1, ρ2 are as defined above, and

P2 = 〈ρ3, ρ4〉, where ρ3 = pr1(M2) = 〈1, 1〉 and ρ4 = pr2(M2) = 〈1, 1〉
then P2 ≻L P1.

We define a maximum matching M in I to be a leximin op-

timal matching under lexicographic preferences if the meta-profile

sort(〈pr1 (M), . . . , prn1
(M)〉) of M is maximum under ≻L, taken over all
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maximum matchings in I. Intuitively, a leximin optimal matching un-

der lexicographic preferences maximises (with respect to ≻L) the profile

of the worst-off reviewer. For example, M2 is the unique leximin opti-

mal matching under lexicographic preferences in the mm-chat instance

illustrated in Fig. 8.2.

• Weighted preferences. We assume the existence of a decreasing weight

function w that maps ranks to real numbers, i.e., w : {1, 2, . . . ,∆} −→ R,

such that w(k) > w(k + 1) for each k (1 ≤ k ≤ ∆ − 1). For example,

one possibily is w′(k) = ∆ − k + 1 (1 ≤ k ≤ ∆ − 1). This ensures

that first-choice papers have largest weight, followed by second-choice

papers, and so on (as in the case of the valuation function). Given a

profile ρ = 〈q1, q2, . . . , q∆〉, define the weight of ρ, denoted w(ρ), to be
∑∆

k=1 w(qk).

Given a meta-profile P = 〈ρ1, ρ2, . . . , ρn1
〉, define sortw(P) to be the

sorted meta-profile 〈ρπ1
, ρπ2

, . . . , ρπn1
〉, where π is a permutation of

1, 2, . . . , n1, such that, for each k (1 ≤ k ≤ n1 − 1), w(ρπk+1
) ≥ w(ρπk

).

The definition of sortw(P) ensures that the profiles are ordered from left

to right as “worst” to “best” under weighted preferences. For example,

with respect to the mm-chat instance I ′ illustrated in Fig. 8.2, ∆ = 2,

and if ρ1 = pr1(M1) = 〈2, 0〉 and ρ2 = pr2(M1) = 〈0, 2〉, and w′ is the

weight function where w′(k) = ∆−k+1 (1 ≤ k ≤ ∆−1), then w′(ρ1) = 4,

w′(ρ2) = 2, and sortw′(〈ρ1, ρ2〉) = 〈ρ2, ρ1〉.
Given two (not necessarily sorted) meta-profiles P1 = 〈σ1, . . . , σn1

〉 and
P2 = 〈σ′

1, . . . , σ
′
n1
〉, we say that P1 >w P2 if there exists some s (1 ≤ s ≤

n1) such that w(σk) = w(σ′
k) (1 ≤ k ≤ s− 1) and w(σs) > w(σ′

s).

For example, if P1 = 〈ρ2, ρ1〉, where ρ1, ρ2 are as defined above, and

P2 = 〈ρ3, ρ4〉, where ρ3, ρ4 are also as defined above, then P2 >w′ P1.

We define a maximum matching M in I to be a leximin

optimal matching under weighted preferences if the meta-profile

sort(〈pr1 (M), . . . , prn1
(M)〉) of M is maximum under >w, taken over all

maximum matchings in I. A leximin optimal matching under weighted

preferences maximises the weight of the profile of the worst-off reviewer.

As above, M2 is the unique leximin optimal matching under weighted

preferences (assuming weight function w′) in the mm-chat instance il-

lustrated in Fig. 8.2.

Garg et al. [242] proved the following results concerning the computa-

tional complexity of computing leximin optimal matchings relative to both

lexicographic and weighted preferences.
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Theorem 8.19 ([242]). Let I be an instance of mm-chat and let ∆ be

the maximum rank of a paper in a reviewer’s preference list, taken over all

reviewers. The following results hold:

(i) if ∆ = 2, each of the problems of finding a leximin optimal match-

ing in I under lexicographic and weighted preferences is solvable in

polynomial time;

(ii) if ∆ = 3, each of the problems of finding a leximin optimal matching

in I under lexicographic and weighted preferences is NP-hard;

(iii) if ∆ = 3, the problem of finding a leximin optimal fractional matching

in I under weighted preferences is solvable in polynomial time. A

fractional assignment can be rounded to give an approximation to a

leximin optimal matching under weighted preferences in polynomial

time.

With respect to the dataset described on Page 410 for the ESA 2008

conference, Garg et al. [242] showed that their approximation algorithm,

referred to in Part (iii) of Theorem 8.19, performed very favourably com-

pared to the software used within the EasyChair conference management

system at that time.

8.6 Conclusions and open problems

Despite their very intuitive definitions, profile-based optimal matchings

have not been extensively studied in the literature. However within the last

few years, a small number of papers have formulated efficient algorithms

for generating such matchings in various problem instances.

One striking omission is srti. We have described polynomial-time algo-

rithms for computing rank maximal, greedy maximum and generous max-

imum matchings in a given srti instance by transforming to the problem

of finding a maximum weight matching in a general weighted graph. How-

ever it remains open to formulate combinatorial algorithms for these prob-

lems that avoid such a reduction. Also, an intriguing open problem is ob-

tained by combining stability with rank-maximality in an sr instance I, as

mentioned in Sec. 4.9.

Very little is known about the structure of profile-based optimal

matchings. For example, it is an open problem to characterise the set

of rank-maximal matchings in a given instance I of hat. Such a charac-

terisation could lead to efficient algorithms for problems such as counting
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rank-maximal matchings in I, generating all rank-maximal matchings in I,

and sampling a rank-maximal matching in I uniformly at random. Similar

remarks apply to greedy maximum and generous maximum matchings, and

to other problem instances.

Finally, we recall that, as discussed in Sec. 8.1, mechanisms for com-

puting profile-based optimal matchings are not strategy-proof in general.

To mitigate this, an alternative is to design a strategy-proof mechanism

that provides an approximate solution, following Procaccia and Tennen-

holtz [484]. For example, the Algorithm SDM (see Sec. 6.1) is a strategy-

proof mechanism for hat. One challenge is to formulate an appropriate

notion of approximation when considering the profile of a matching.
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[272] Halldórsson, M., Iwama, K., Miyazaki, S. and Yanagisawa, H. (2007). Im-
proved approximation of the stable marriage problem, ACM Transactions
on Algorithms 3, 3, article number 30. Preliminary version appeared as
[269]. Cited on page(s): 127, 136, 137, 141, 144

[273] Hamada, K., Iwama, K. and Miyazaki, S. (2008). The hospitals/residents
problem with quota lower bounds, in Proceedings of Match-UP ’08: Match-
ing Under Preferences – Algorithms and Complexity, held at ICALP ’08:
the 38th International Colloquium on Automata, Languages and Program-
ming, pp. 55–66. Cited on page(s): 436

[274] Hamada, K., Iwama, K. and Miyazaki, S. (2009). An improved approxima-
tion lower bound for finding almost stable stable maximum matchings, In-
formation Processing Letters 109, 18, pp. 1036–1040. Cited on page(s): 101

[275] Hamada, K., Iwama, K. and Miyazaki, S. (2011). The hospitals/residents
problem with quota lower bounds, in Proceedings of ESA ’11: the 19th
European Symposium on Algorithms, Lecture Notes in Computer Science,
Vol. 6942 (Springer), pp. 180–191, preliminary version appeared as [273].
Cited on page(s): 227, 228, 232, 233, 234



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

Bibliography 437

[276] Harary, F. (1983). Maximum versus minimum invariants for graphs, Jour-
nal of Graph Theory 7, pp. 275–284. Cited on page(s): 133, 312, 330
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[398] Kojima, F. and Ünver, M.U. (2008). Random paths to pairwise stabil-
ity in many-to-many matching problems: a study on market equilibra-
tion, International Journal of Game Theory 36, 3-4, pp. 473–488. Cited on
page(s): 89, 255, 259, 260

[399] Korte, B. and Hausmann, D. (1978). An analysis of the greedy heuristic for
independence systems, in Annals of Discrete Mathematics, Vol. 2 (North-
Holland), pp. 65–74. Cited on page(s): 17, 136, 312, 330

[400] Korte, B. and Vygen, J. (2012). Combinatorial Optimization, Algorithms
and Combinatorics, Vol. 21, 5th edn. (Springer). Cited on page(s): 14

[401] Kujansuu, E., Lindberg, T. and Mäkinen, E. (1999). The stable roommates
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Glossary of symbols

This glossary, organised alphabetically, indicates the first usage of major

notation, together with the context in which the relevant symbol is defined

and a brief description of the symbol’s meaning. In the context column, the

symbol “G” corresponds to an undirected graph, and the symbol “〈G, c〉”
corresponds to a capacitated graph.

Symbol Page Context Meaning

A 281 3psa set of agents

A 38 ha set of applicants

A 32 sri set of agents

AM 32 sri agents who are assigned in M

ai 281 3psa individual agent

ai 38 ha individual applicant

ai 32 sri individual agent

A(Hk) 235 hr-cq acceptable residents of Hk ∈ H
A(ai) 39 ha acceptable houses of ai ∈ A

A(ai) 32 sri acceptable agents of ai ∈ A

A(fj) 256 wf acceptable workers of fj ∈ F

A(hj) 39 ha acceptable applicants of hj ∈ H

A(hj) 18 hr acceptable residents of hj ∈ H

A(ri) 18 hr acceptable hospitals of ri ∈ R

A(si) 261 spa acceptable projects of si ∈ S

A(wi) 256 wf acceptable firms of wi ∈ W

αj 93 sm matching {(mi, pj,S(mi)) : mi ∈ U}
αj,T 90 sm matching {(mi, pj,T (mi)) : mi ∈ U}
α(m,n) 329 all inverse Ackermann function

ba(M, I) 100 smi set of blocking agents of M in I

461
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Symbol Page Context Meaning

ba(M, I) 203 sri set of blocking agents of M in I

ba(I) 203 sri min{|ba(I,M)| : M ∈ M}
ba+(I) 100 smi min{|ba(I,M)| : M ∈ M+}
bp(M, I) 100 smi set of blocking pairs of M in I

bp(M, I) 203 sri set of blocking pairs of M in I

bp(I) 203 sri min{|bp(I,M)| : M ∈ M}
bp+(I) 100 smi min{|bp(I,M)| : M ∈ M+}
β+(G) 133 G max. size of a matching in G

β−(G) 311 G min. size of a maximal matching in G

βj,T 91 sm matching {(pj,T (wi), wi) : wi ∈ W}

C 16 〈G, c〉 sum of vertex capacities

C 18 hr sum of hospital capacities

C(G1) 361 chat counterpart of G1 with cloned houses

c 16 〈G, c〉 vertex capacity function

c 19 hr agent capacity function

cj 18 hr capacity of hj ∈ H

cj 262 spa capacity of pj ∈ P

cmax 143 hr maximum hospital capacity

c(M) 23 smi cost of M

cU (M) 23 smi cost of M for the men

cW (M) 23 smi cost of M for the women

c(ak) 256 wf capacity of ak ∈ W ∪ F

Chai
220 srcf choice function of agent ai

Ch(ak, S) 258 wf-2 most-preferred subset of S in S(ak)

||x||d 286 3dsr Euclidean norm of x in R
d

∆(M,M ′) 349 hat factor by which M ′ is more popular than M

δ(M,M ′) 349 hat margin by which M ′ is more popular than M

D 274 3gsm set of dogs

DM 290 smi envy graph of M

D′
M 306 ha envy graph of M

D(I) 25 smi rotation digraph of I

d(M) 23 smi sex-equality of M

dk 262 spa capacity of lk ∈ L

dk 274 3gsm individual dog

degM (t) 276 3gsm degree of triple t in M
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Symbol Page Context Meaning

E 15 G set of even vertices

E 14 G edges of G

E 38 ha set of acceptable pairs

E 18 hr set of acceptable pairs

E 32 sri set of acceptable pairs

E 256 wf set of acceptable pairs

Ek 384 hat set of rank-k edges

E≤k 384 hat E1 ∪E2 ∪ · · · ∪Ek

F 255 wf set of firms

fj 360 cha |f(hj)| for hj ∈ H

fj 255 wf individual firm

fi(S) 283 sr-tr ai’s most-preferred member of S

f(ai) 360 cha first house on ai’s list

f(ai) 361 chat set of first-choice houses on ai’s list

f(ai) 335 ha first house on ai’s list

f(ai) 345 hat set of first-choice houses on ai’s list

f(hj) 360 cha {ai ∈ A : f(ai) = hj} for hj ∈ H

f(hj) 335 ha {ai ∈ A : f(ai) = hj} for hj ∈ H

G=(V,E) 14 G undirected graph

G=(U,W,E) 32 G bipartite graphG with bipartition V = U∪W
G=(V,E) 39 ha underlying graph

G=(V,E) 19 hr underlying graph

G=(A,E) 32 sri underlying graph

G′ 360 cha (capacitated) reduced graph of G

G′ 361 chat (capacitated) reduced graph of G

G′ 336 ha reduced graph of G

G′ 346 hat reduced graph of G

G1 361 chat subgraph of G with first-choice edges

G1 345 hat subgraph of G with first-choice edges

Gk 384 hat subgraph Gk = (V,E≤k) of G

GM 341 ha switching graph of M

G+
M 374 smi reduced labelled graph of G

g(M) 349 hat unpopularity margin of M

H 234 hr-cq set system of hospitals H ⊆ P(H)
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Symbol Page Context Meaning

HI 94 sm Hasse diagram of stable matchings in I

HM (I) 129 hrt tie-breaking instances of I relative to M

H 38 ha set of houses

H 18 hr set of hospitals

H ′ 345 hat set of f -houses

H ′′ 345 hat set of f -houses and s-houses

Hk 234 hr-cq bounded set of hospitals in H
hj 38 ha individual house

hj 18 hr individual hospital

∼ 153 hrt equivalence relation for strong stability

∼ai
26 hrp indifference relation for ai ∈ R ∪H

∼ai
36 srpi indifference relation for ai ∈ A

I 18 all problem instance

Î 293 sr preference lists in I reversed

Ik 384 hat sub-instance of I with underlying graph Gk

I\S 188 sri deletion of agents in S from I

Lk 262 spa-s preference list of lk ∈ L

Lj
k 262 spa-s projected preference list of lk for pj

L 261 spa set of lecturers

L(hj) 400 chat L-value of hj ∈ H

li 335 ha last resort house of ai ∈ A

lj 230 hr-lq lower quota of hj ∈ H

lk 261 spa individual lecturer

lkj 239 hr-cr lower quota of Rk
j ∈ Rj

M 14 G set of matchings

M 40 ha set of matchings

M 100 smi set of matchings

M+ 40 ha set of maximum matchings

M+ 100 smi set of maximum matchings

Mk 397 chat set of matching of size k

Mpop 343 ha set of popular matchings

M+
pop 344 ha set of maximum popular matchings

M 14 G matching

M 39 ha matching
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Symbol Page Context Meaning

M 18 hr matching

M 32 sri matching

M · C 342 ha switching path/cycle C applied to M

M/ρ 25 smi elimination of rotation ρ from M

Ma 20 hr resident-optimal stable matching

Mz 20 hr hospital-optimal stable matching

M(Hk) 235 hr-cq set of assignees of Hk ∈ H in M

M(a) 279 3dsm-cyc next agent in t ∈ M where a ∈ t

M(a) 274 3gsm pair formed by removing a from M [a]

M [a] 274 3gsm triple of M containing a

M(ai) 281 3psa M [ai]\{ai} where ai ∈ A

M(ai) 284 3wkt next element of triple of M containing ai
M(ai) 39 ha assignee of ai ∈ A if ai assigned in M

M(ai) 32 sri assignee of ai ∈ AM in M

M(ak) 256 wf set of assignees of ak ∈ W ∪ F in M

M [ai] 281 3psa unordered triple of M containing ai
M(hj) 39 ha assignee of hj ∈ H if hj assigned in M

M(hj) 18 hr set of assignees of hj ∈ H in M

M(lk) 262 spa set of assignees of lk ∈ L in M

M(pj) 262 spa set of assignees of pj ∈ P in M

M(ri) 18 hr assignee of ri ∈ R if ri assigned in M

M(si) 262 spa assignee of si ∈ S if si assigned in M

M(v) 14 G assignee of v ∈ V in M

M(v) 16 〈G, c〉 set of assignees of v ∈ V in M

m 14 G number of edges

m 38 ha number of acceptable pairs

m 18 hr number of acceptable pairs

m 32 sri number of acceptable pairs

mi 274 3gsm individual man

mi 22 smi individual man

N(v) 15 G open neighbourhood of v ∈ V

n 14 G number of vertices of G

n 41 ha total number of applicants and houses

n 393 hrt total number of residents and hospitals

n 22 smi number of men (=number of women)

n1 38 ha number of applicants
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Symbol Page Context Meaning

n1 18 hr number of residents

n2 38 ha number of houses

n2 18 hr number of hospitals

⊕ 14 G symmetric difference operator

O 15 G set of odd vertices

O(I) 188 sri number of odd parties in a stable partition

Ok 382 chat k-tuple 〈0, 0, . . . , 0〉 of zeros
OM

j 253 hrs occupancy of hj in M

OM (ai) 340 ha single member of {f(ai), s(ai)}\{M(ai)}

⊳ 40 ha Pareto improvement relation on matchings

⊳ 25 smi partial order on rotations

⊳ 35 sri partial order on rotations

� 21 hr dominance relation

� 153 hrt dominance relation

≺ai
282 3psa preference list of ai over agents in A\{ai}

≺ai
26 hrp preference poset of ai ∈ R ∪H

�ai
191 sri preference relation for ai

≺D
mi

276 3gsm linear order of mi ∈ U over dogs in D

≺W
mi

276 3gsm linear order of mi ∈ U over women in W

≺R 397 chat right-domination relation on profiles

Π 182 sri stable partition

P(X) 220 all power set of X

P2(X) 281 all {X ∈ P(X) : |X | = 2}
P 409 ra set of papers

P 261 spa set of projects

PT (ai) 90 sm sorted multiset of ai’s partners in T ⊆ S
P (M,M ′) 41 ha set of applicants who prefer M to M ′

P (M,M ′) 368 sri set of applicants who prefer M to M ′

Pk 261 spa projects offered by lk ∈ L

p(M) 43 ha profile of matching M

p(M) 395 srti profile of matching M

p(P ) 400 chat profile of alternating path P

p+(I) 311 ha max. size of a Pareto optimal matching in I

p−(I) 311 ha min. size of a Pareto optimal matching in I

pI(M) 391 hrt profile of matching M in I
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Symbol Page Context Meaning

pR(M) 44 ha reverse profile of matching M

pf (M) 407 smti weight-function profile of matching M

pw(M) 389 what weighted profile of matching M

pj 410 ra individual paper

pj 261 spa individual project

pn 174 sr solvability probability

pj,T (ai) 90 sm jth element in PT (ai)

pop+(I) 339 ha max. size of a popular matching in I

pop+(I) 376 smi max. size of a popular matching in I

pop−(I) 339 ha min. size of a popular matching in I

pop−(I) 376 smi min. size of a popular matching in I

ρ 25 smi rotation

ρ 35 sri rotation

Rj 239 hr-cr classification of A(hj) by hj ∈ H

RM (I) 129 hrt tie-breaking instances of I relative to M

R 18 hr set of residents

R 409 ra set of reviewers

R(hj) 404 chat R-value of hj ∈ H

R(I) 25 smi set of rotations in I

RC 244 hrc set of resident couples

RS 244 hrc set of single residents

Rk
j 239 hr-cr class in classification of A(hj) by hj ∈ H

r 44 ha max. rank of a house in an applicant’s list

r(M) 42 ha regret of matching M

r(M) 391 hrt regret of matching M

r(M) 23 smi regret of matching M

r(M) 395 srti regret of matching M

ri 18 hr individual resident

ri 410 ra individual reviewer

rank 46 chat rank of a house in a given applicant’s list

rank 39 ha rank of a house in a given applicant’s list

rank 19 hr rank of an agent in a given agent’s list

rank 27 hrt rank of an agent in a given agent’s list

rank 33 sri rank of an agent in a given agent’s list

rank 209 srti-grp rank of an edge given by rank : E −→ R
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Symbol Page Context Meaning

◮ 41 ha “more popular than” relation

◮ 368 sri “more popular than” relation

◮ 366 wha “more popular than” relation

≻L 383 chat left-domination relation on profiles

S 21 hr set of stable matchings

S 152 hrt set of strongly stable matchings

S 152 hrt set of super-stable matchings

S 34 sri set of stable matchings

S(ak) 258 wf-2 acceptable sets of partners of ak ∈ W ∪F

S 261 spa set of students

s(I) 131 smi size of a stable matching in I

s+(I) 137 smti max. size of a weakly stable matching

s+(I) 200 srti max. size of a weakly stable matching

s−(I) 144 smti min. size of a weakly stable matching

s−(I) 200 srti min. size of a weakly stable matching

si 253 hrs size of a resident

si 261 spa individual student

si(S) 283 sr-tr ai’s least-preferred member of S

s(ai) 360 cha ai’s most-preferred s-house not equal to f(ai)

s(ai) 361 chat ai’s most-preferred houses that are even in G1

s(ai) 335 ha first non f -house on ai’s list

s(ai) 345 hat ai’s most-preferred houses that are even in G1

t(I) 137 smti number of preference lists with ties

t(a) 279 3dsm-cyc next agent in t where a ∈ t

t(a) 274 3gsm pair formed by removing a from triple t

t(ai) 281 3psa t\{ai} where ai ∈ A

t(ai) 284 3wkt next element of triple t containing ai

U 15 G set of unreachable vertices

U 274 3gsm set of men

U 22 smi set of men

Uk 234 hr-cq common quota of bounded set Hk ∈ Hk

UM 23 smi men who are assigned in M

u(M) 349 hat unpopularity factor of M

uj 230 hr-lq upper quota of hj ∈ H

uk
j 239 hr-cr upper quota of Rk

j ∈ Rj
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Symbol Page Context Meaning

ut 40 ha utility of applicant–house pair

ut(M) 40 ha utility of matching M

∨ 21 hr join of two stable matchings

V 14 G vertices of G

V 19 hr vertices in underlying graph

v 410 ra valuation function

∧ 21 hr meet of two stable matchings

W 274 3gsm set of women

W 40 ha largest weight of an applicant–house pair

W 22 smi set of women

W 255 wf set of workers

wi 255 wf individual worker

wj 274 3gsm individual woman

wj 22 smi individual woman

wt 40 ha weight assigned by an applicant to a house

wt 23 smi weight assigned by one agent to another

wt(M) 40 ha weight of M

wt(M) 23 smi weight of M
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#P-complete, 67
#P-complete, 94, 118

#P-hardness, 96, 97
#RHΠ1, 118
#RHΠ1-complete, 118, 119
#-sm, 118, 119
#-sr, 119

2-sat, 66, 69–71, 166, 179, 202, 215,
296
acyclic, 178
weighted, 70, 395

3dsm, see Three-Dimensional Stable
Marriage problem

3dsm-cyc, see Three-Dimensional
Stable Marriage problem with
Cyclic Preferences

3dsmi-cyc, 279
3dsmt-cyc, 280
3gsm, see Three-Gender Stable

Marriage problem
3gsm-pon, 277
3psa, see Three-Person Stable

Assignment Problem
3psa-pon, 283, 284
3wkt, see Three-Way Kidney

Transplant

α-stable, 124–126
absorbant, 113
absorbing set, 193, 194

AC, see arc consistency
acceptable

(ha), 38
(hr), 18
(spa-s), 261
(sri), 32
(wf), 256

active phase, 87
acyclic 2-sat, see 2-sat, acyclic
acyclic preferences, see preferences,

acyclic
acylic relation, 176
adjacency-preserving

gate, 69
network, 65, 70

adjacent (bit strings), 69
agent, 1

(3psa), 281
(ha), 38
(hr), 18
(sr), 32
(wf), 255

Algorithm SDM, 304, 415
algorithmic game theory, 9
algorithmic mechanism design, 9
allocation, 219

stable, 219
“almost stable” matching, see

matching, “almost stable”
alternating path, 14
alternating path coalition, 315, 316
ant colony algorithm, 63, 124
AP reduction, 118, 119
applicant, 5

471
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SFAS, 30
applicant-complete matching, see

matching, applicant-complete
approximation algorithm, 136, 140,

143–145, 170, 179, 180, 208, 220,
312, 414
Király’s, 138

arc consistency, 74
propagation, 75–78

arithmetic operations, 388
assigned

(ha), 39
(hr), 18
(spa-s), 262
(sri), 32
(wf), 256

assignment
(ha), 39
(hr), 18
(spa-s), 262
(sri), 32
(wf), 256
capacitated graph, 16

Assignment Game, 12
Assignment problem, 12, 68, 126, 386,

405, 407
auction mechanisms, 31
augmenting, 14
augmenting coalition, 327, 329
augmenting path, 14

maximum profile, 399
minimum profile, 404

augmenting path coalition, 315, 317

b-interchange, 56
algorithm, 56

b-matching
egalitarian stable, 219
minimum regret stable, 219
stable, 218

B-preferences, 222
b-way stable l-way exchange problem,

285
balanced stable matching, see

matching, balanced stable
batch stability testing, 59

bed-swapping, 288
Beijing, 46
Bellman–Ford algorithm, 400
Berge’s theorem, 14
best response dynamics, 88, 123
better response dynamics, 88, 123
bijection, 143
billboard model, 59
billet, 31
binary encoding, 74
bipartite graph, 15
bipartite matching problem, see

matching problem, bipartite
bipartite stable b-matching problem,

255
bipartition, 15
Birkhoff’s Representation Theorem,

198
bistable matching, see matching,

bistable
bistable pair, 294
bistable permutation, 295
BitTorrent, 37
blocking agent, 81, 100
blocking coalition, 222, 240
blocking cycle, 296, 297
blocking pair, 99, 119, 124, 203, 205

(hr), 19
(hr+sn), 122
(hr-cq), 235
(hrp), 27
(hrs), 253
(smi), 22
(spa-(s,p)), 271
(spa-p), 269
(spa-s), 262
(srcf), 221
(sri), 32
(srpi), 36
(wf-1), 256
(wf-2), 258
permissible set, 102
satisfying, 79–81, 88, 126, 192, 193,

259
blocking resident, 233
blocking triple, 274, 277, 281, 283
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blocks, see blocking pair

blossom-shrinking, 14

book proof, 113, 334

Boston, 12, 31
bound

pair, 155

resident, 157

bounded length preference list, see
preference list, bounded length

bounded set, 234

breadth-first search, 15

breaking ties, see tie-breaking

BW -preferences, 222

c-cv, see Comparator Circuit Value

c-ns, see Comparator Network
Stability

cabal, 104

cadet

branch, 31

military, 31

naval, 31

campus housing, 37, 46

Canada, 30

Canadian Resident Matching Service,
26

candidate resident, 121

capacitated, 16

Capacitated House Allocation
problem, 5, 45, 319

Capacitated House Allocation
problem with Ties, 46

capacity, 1, 18, 256

cardinal utility, 12

Carnegie-Mellon University, 46

CC, 68

CC-complete, 68, 71

center stable matching, see matching,
center stable

centralised matching scheme, 2

certificate, see succinct certificate

certificate complexity, 64, 123

cfg, see Coalition Formation Game

cha, see Capacitated House
Allocation problem

chat, see Capacitated House
Allocation problem with Ties

cheating strategy, 105, 106
chess, 38
China, 30, 31, 46
choice function, 220

increasing, 221
linear, 221

choosable, 113
chromosome, 124
class, 239

inclusion poset, 242
classification, 239
Classified Stable Matching problem,

see Hospitals / Residents problem
with Classified Residents

clearinghouse, 2
clique, 113–115
clique, 62
cloning hospitals, 142, 263, 392
cloning houses, 361
closed hospital, 228, 230
closed subset, 119

of a mirror poset, 195
of a poset, 198
of rotations

(smi), 25
(sri), 35, 36, 195, 196

co-monotone, 72
coalition, 102, 103, 222
Coalition Formation Game, 6, 222,

330
College Admissions problem, 18
colouring, 113
com smti, 132, 134, 167, 176, 199,

200
common quota, see quota, common
comparator, 67

network, 67
Comparator Circuit Value, 67
Comparator Network Stability, 67
competitive ratio, 119
complete subset

of a mirror poset, 195
of rotations, 35, 36, 195, 196

component, 341
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computational social choice, 9

Condorcet winner, 333

Condorcet’s voting paradox, 358

conference management system, 409
conference papers, 47

congestion, 2

consistent couple, see couple,
consistent

consistent preferences, see
preferences, consistent

constraint programming, 73

Constraint Satisfaction Problem, 61,
73

contractual individual stability, 223

cooperative game, 304, 313, 331

core matching, see matching, in the
core

core partition, 222, 330

cost

of a stable matching

(smi), 23, 63
(sri), 33

counting

popular matchings, 343

rank-maximal matchings, 415

stable matchings, 117

couple, 11, 29, 124, 243, 244

consistent, 251

inseparable, 252

CP, see constraint programming

critical set, 168

critical subgraph, 168
csp, see Constraint Satisfaction

Problem

csp encoding, 75, 257

cubic graph, 17, 311
cutting plane, 181

cycle component, 342

Cycle Stable Roommates problem,
286, 296

cyclic coalition, 305, 315, 317, 327,
329

satisfying, 305

cyclic coalition-free matching, see
matching, cyclic coalition-free

data mining, 409
daycare assignment, 31
decentralised algorithm, 88

(hr+sn), 122
(smi), 79

deferred acceptance algorithm, 20
degree, 280
delete the pair, 155, 294
Denmark, 31
Dense k-Subgraph problem, 234
dichotomy, 242
Dinitz conjecture, 10, 113, 115
distributed algorithms, 59
distributed weighted model, 59
distributive lattice, see lattice,

distributive
divorce digraph, 55, 125, 126
divorce operation, 56, 126
dominance relation, 21, 153
dominant strategy, 8, 103
dominate, 21, 193, 219
double favourites, 216
downward forest, 242
driver, 216
dual rotation, see rotation, dual
dual–simplex method, 73
duality theory, 72
Duke University, 46
Dulmage–Mendelsohn

Decomposition, 15, 345, 361, 383
DVD rental market, 47
dynamic algorithm, 184
dynamic market, 312, 356

EasyChair, 409, 414
ECO-synthesis, 31
edge dominating set, 17
edge-preserving function, 69
Edmonds–Gallai Decomposition, 15
egalitarian

stable b-matching, see b-matching,
egalitarian stable

stable matching, see matching,
egalitarian stable

strongly stable matching, see
matching, egalitarian
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strongly stable

super-stable matching, see
matching, egalitarian
super-stable

weakly stable matching, see
matching, egalitarian
weakly stable

EGS algorithm, 74

elective course, 46

elimination of a rotation, see
rotation, elimination

elitist odd party, see odd party, elitist

empirical analysis, 140, 389

Encyclopedia of Algorithms, 334

enumerating, see listing

envy graph, 290

EOU labelling, 16, 347, 361, 384, 390

equilibrium, 106

equivalence class, 153, 171

equivalence relation, 153

equivalent, 116

ESA, see European Symposium of
Algorithms

Euclidean distance, 118, 212

European Symposium of Algorithms,
410, 414

even party, 182, 189

even vertex, 15

exact bp sr, 204

exact bp sri, 204, 205

exact bp srt, 204, 207

exact mm, 133

exchange-blocking

coalition, 289
pair, 287

exchange-stable matching, 7

exhausted, 139

expanded rotation graph, 60

experimental comparison, 389

exploding offers, 2

exposed, 14, 400

extended Gale–Shapley algorithm, see
EGS algorithm

extended rotation poset, see rotation
poset, extended

f -house, 335, 345, 360
faculty recruitment, 31
Faigle geometry, 177
failure-free enumeration, 78
feasible matching, see matching,

feasible
feasible stable matching, see

matching, feasible stable
federal judicial law clerk, 31
file-sharing network, 37
firm, 29, 255
firm-optimal stable matching, see

matching, firm-optimal stable
first–last property, 219
fixed pair

(hr), 19
(smi), 64
(sri), 35, 178
(sri), 68

fixed point, 71, 182, 186
fixture, 217
forbidden pair, 108, 109, 213
forced pair, 108, 109
Formal Analysis, Theory and

Algorithms research group, 333
FPRAS, see Fully Polynomial

Randomised Approximation
Scheme

FPT, 135, 146, 249
fractional stable matching, see

matching, fractional stable
France, 31
Fredman–Tarjan algorithm, 388, 405,

408
free pair, 215
full, 18, 45, 235, 256, 262
Fully Polynomial Randomised

Approximation Scheme, 118, 119

Gabow–Tarjan algorithm, 388, 405,
408

Gale–Shapley algorithm
hospital-oriented, 20
man-oriented, 103–105
resident-oriented, 19

gatewidth, 70
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gen-median-(p, q), 96
gen-median-(p, q)-dual, 96
gen-median-1, 96, 97
gen-median-1-dual, 96, 97
General Teaching Council for

Scotland, 47
generalised egalitarian stable

matching, see matching,
generalised egalitarian stable

generalised median stable matching,
see matching, generalised median
stable

generalised minimum regret stable
matching, see matching,
generalised minimum regret stable

generous k-matching, 397
generous maximum matching, see

matching, generous maximum
generous popular matching, see

matching, generous popular
genetic algorithm, 63, 124
geometric 3dsr, 286
geometric srti, 212
Germany, 31
globally fair, 98
globally-ranked pairs, 209
government-subsidised housing, 46
grand coalition, 313
graph

undirected, 14
greedy algorithm, 304
greedy k-matching, 397
greedy maximum matching, see

matching, greedy maximum
group preferences, 258
group strategy-proof, 304
GS-list, 75
GS-lists, 74, 77, 116

ha, see House Allocation problem
half-matching, 190, 191
half-weighted edge, 190
Hall’s Marriage Theorem, 15
Hasse diagram, 94, 97, 198
hat, see House Allocation problem

with Ties

head, 155, 169
hedonic game, 222
heuristic

(hrc), 249
(max hrt), 142

HGS algorithm, see Gale–Shapley
algorithm, hospital-oriented

higher education admission, 13, 31
China, 30
Hungary, 2, 229

highly correlated instance, 354
hm, see Housing Market
hmt, see Housing Market with Ties
Hopcroft–Karp algorithm, 307, 337,

390
hospital, 18
hospital-optimal stable matching, see

matching, hospital-optimal stable
hospital-oriented Gale–Shapley

algorithm, see Gale–Shapley
algorithm, hospital-oriented

Hospitals / Residents problem, 4, 18
with Couples, 29
with Partially-ordered lists, 26
with Ties, 27, 127

Hospitals / Residents problem with
Classified Residents, 239

Hospitals / Residents problem with
Common Quotas, 228, 234

Hospitals / Residents problem with
Consistent Couples, 244

Hospitals / Residents problem with
Couples, 243, 298

Hospitals / Residents problem with
Inseparable Couples, 244, 252

Hospitals / Residents problem with
Lower Quotas, 228

Hospitals / Residents problem with
Sizes, 253

house, 5
House Allocation problem, 5, 38, 305
House Allocation problem with Ties,

45, 314
House-swapping Game, 38
Housing Market, 38, 305, 313
Housing Market with Ties, 318
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hr, see Hospitals / Residents problem
hr+sn, 122
hr-cq, see Hospitals / Residents

problem with Common Quotas
hr-cq-nss, 237, 263
hr-cr, see Hospitals / Residents

problem with Classified Residents
hr-cr-nss, 241
hr-cr-nss-0, 242
hr-lq, see Hospitals / Residents

problem with Lower Quotas
hr-lq-1, 228, 230, 298
hr-lq-2, 228, 232
hr-lq-3, 234
hrc, see Hospitals / Residents

problem with Couples
hrc-dual-market, 248
hrcc, see Hospitals / Residents

problem with Consistent Couples
hric, see Hospitals / Residents

problem with Inseparable Couples
hrp, see Hospitals / Residents

problem with Partially-ordered lists
hrs, see Hospitals / Residents

problem with Sizes
hrt, see Hospitals / Residents

problem with Ties
Hungary, 2, 13, 31, 229
hypercube, 58, 65, 69, 70

identification property, 121, 251
immediate predecessor, 94
implication digraph, 178
improper rotation, see rotation,

improper
improving coalition, 315, 327

satisfying, 315
improving coalition-free matching, see

matching, improving coalition-free
inapproximability, 137, 204, 207, 353,

365, 371, 380
incompatible donor, 37
incomplete information, 168, 169
incremental algorithm, 89, 184
independence property, 121
independent, 113

India, 31
indifference, 6
indifferent

(geometric 3dsr), 286
(hr), 21
(hrp), 26
(srpi), 36

individual stability, 223
individually rational, 39, 221, 258,

311
indivisible goods, 38
initial endowment, 39, 311, 313
inseparable couple, see couple,

inseparable
Integral Stable Allocation problem,

220
interpolating invariant, 131, 376
interpolation, 131, 133, 340
inverse Ackermann function, 329
isa, see Integral Stable Allocation

problem
Israel, 46

Japan, 30, 228
Japan Residency Matching Program,

228, 238
join, 21, 130, 153, 154, 163, 197
join-irreducible, 197, 198
JRMP, see Japan Residency

Matching Program
jth generalised median stable

matching, see matching,
generalised median stable

jth level ideal, 93

k-attribute model, 117–119, 390
k-choosable, 113
k-Euclidean model, 118, 119
k-list model, 117, 118
k-range model, 117, 118
k-stable, 124–126
kernel, 113–116
kidney exchange, 37, 209, 223, 296
Kronecker delta function, 407

L, 68
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L-value, 400
laminar family, see nested set system
last resort house, 335
lattice, 21, 22, 60, 67, 71, 72, 118,

168, 169, 257, 259
distributive, 61, 67, 73, 97, 130,

153, 154, 161, 163, 196–198,
295

intersection, 161, 162
least unpopularity factor matching,

see matching, least unpopularity
factor

least unpopularity margin matching,
see matching, least unpopularity
margin

lecturer, 261
lecturer-optimal stable matching, see

matching, lecturer-optimal stable
left-dominate, 382
level, 157
lexicographic preferences, see

preferences, lexicographic
lexicographic stable matching, see

matching, lexicographic stable
lexicographically acyclic preferences,

see preferences, lexicographically
acyclic

lexicographically cyclic preferences,
see preferences, lexicographically
cyclic

leximin optimal matching, see
matching, leximin optimal

line graph, 113–116
linear extension, 169, 202, 276, 282

relaxed, 276, 282
linear programming, 72, 180, 295, 296
list chromatic index, 113
listing

pairwise stable matchings, 259
Pareto optimal matchings, 312
popular matchings, 344
rank-maximal matchings, 415
stable matchings

(smf), 108
(smi), 26, 75, 78, 123
(sri), 36, 71, 177, 179

(wf-1), 257
strongly stable matchings

(smti), 171
super-stable matchings

(smti), 166
(srpf), 215
(srti), 202

weakly stable matchings
(smti), 146

load balancing, 409
local search, 142, 249
local/global median phenomenon, 98,

194, 198
locally fair, 98
locally stable matching, see

matching, locally stable
logspace reduction, 67, 126
longest path, 351
lottery, 304
lower bound, 123, 177, 224
lower quota, see quota, lower
LP, see linear programming
lying, 63

M♮-concave function, 264
majority assignment, 333
majority voting rule, 358, 366
man-exchange-blocking

coalition, 289
pair, 292, 293

man-exchange-stable, 290
man-optimal stable matching, see

matching, man-optimal stable
man-optimal weakly stable matching,

see matching, man-optimal weakly
stable

man-oriented Gale–Shapley
algorithm, 106

man-strongly stable matching, see
matching, man-strongly stable

manipulable, 106
Many–Many Capacitated House

Allocation problem with Ties, 411
many–many stable matching, see

matching, many–many stable
market design, 8
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Markov Chain, 118
marriage graph, 115, 116

principal, 116
master list, 30, 38, 126, 135, 145–147,

158, 165, 170, 171, 201, 202, 209,
233, 235, 248, 249, 363, 365, 366

matched, 14
matching, 5

(3dsmi-cyc), 279
(3gsm), 274
(3psa), 281
(3wkt), 284
(ha), 39
(hr), 18
(hr-cq), 235
(hr-cr), 240
(hr-lq-1), 230
(hr-lq-2), 232
(hrc), 245
(hrs), 253
(spa-s), 262
(sri), 32
(wf-1), 256
(wf-2), 258
“almost stable”, 100, 102, 202, 298
applicant-complete, 336, 346, 353
balanced stable, 63, 93, 109, 126
bistable, 293, 296
capacitated graph, 16
center stable, 98
coalition-exchange-stable, 289–291
complete weakly stable, 132
cycle stable, 296, 297
cyclic coalition-free, 305, 306, 308
egalitarian stable

(smi), 23, 24, 61, 64, 73, 93,
109, 120

(sri), 33, 179, 181
(wf-1), 257

egalitarian strongly stable, 29, 171
egalitarian super-stable, 29, 166,

215
egalitarian weakly stable, 29, 146
exchange-stable, 292

(sm), 288
(sr), 287, 326

feasible, 157
feasible stable, 120, 121
firm-optimal stable, 257, 259
fractional stable, 72, 73
generalised egalitarian stable, 122
generalised median stable, 91, 93,

94, 97, 99, 194, 295
generalised minimum regret stable,

121
generous maximum, 44, 396

(Rental Market), 408
(chat), 404
(mm-chat), 411
(smti), 407
(srti), 414

generous popular, 344, 345
greedy maximum, 44, 396

(mm-chat), 411
(smti), 407
(srti), 414

hospital-optimal stable, 20, 237,
238

improving coalition-free, 315
in the core, 305, 313, 318, 331
in the strict core, 313, 318
individually rational, 313, 318
least unpopularity factor, 349, 353,

371, 380
least unpopularity margin, 349, 380
lecturer-optimal stable, 267
lexicographic stable, 394
leximin optimal, 412

under lexicographic
preferences, 412

under weighted preferences,
413

locally stable, 122
man-coalition-exchange-stable,

289–291
man-exchange-stable, 120, 289,

290, 292, 293
man-optimal bistable, 294
man-optimal stable, 68, 75, 78,

102, 103, 105, 106, 126, 291
man-optimal weakly stable, 130,

171



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

480 Index

man-strongly stable, 167
many–many

bipartite, 362, 390, 410
many–many stable

bipartite, 29, 73, 89, 99, 117,
121, 148, 168, 218, 243, 255,
298

non-bipartite, 6, 216, 218–220
maximal, 17, 133, 211, 330

(cha), 319
(ha), 306

maximum, 14, 16, 142, 307, 311,
348

maximum Pareto optimal, 303,
306, 311, 319, 324, 326, 329

maximum popular, 339, 348, 376
maximum stable, 188, 192, 203
maximum utility, 40
maximum utility maximum

cardinality, 411
maximum weight, 12, 387, 388,

393, 396, 414
median stable, 10, 90, 91, 93, 97,

109, 195, 198
in a lattice, 97, 98

minimum maximal, 17
minimum Pareto optimal, 311
minimum popular, 339, 376
minimum regret stable, 29

(smi), 23, 24, 73, 93, 109, 120
(sri), 33, 34, 67

minimum regret strongly stable,
29, 171

minimum regret super-stable, 29,
166, 202, 215

minimum regret weakly stable, 145
minimum total regret stable, 257
minimum weakly stable, 144
minimum weight maximum

cardinality, 41, 44, 317, 319,
328, 329, 389

minimum weight maximum
cardinality popular, 344,
345

minimum weight stable
(smi), 13, 23, 24, 64, 71, 73, 74

(sri), 33, 179, 180
(wf-1), 257

minimum weight strongly stable,
29

minimum weight super-stable, 29
minimum weight weakly stable, 29
mixed, 357
near-optimal stable, 63
optimal stable, 23, 120
P-stable, 192, 194
pairwise stable, 231, 258
Pareto optimal, 6, 11

(chat), 46
(ha), 40, 41, 305
(hat), 45, 315, 350, 352
(hr), 324
(hrt), 147

Pareto stable, 147, 148
perfect, 14, 355
popular, 6, 11

(cha), 360
(chat), 46, 361
(ha), 41, 334
(hat), 45, 345, 389
(smi), 374
(smti), 378, 380
(sri), 368, 380
(srti), 370, 380
(wha), 366
existence, 357

popular among maximum
matchings, 378

popular mixed, 357, 358
popular pairwise stable, 232
private stable, 124
profile-based optimal, 11

(chat), 46
(ha), 44
(hat), 45

rank-maximal, 43
(Rental Market), 408
(chat), 383, 390, 404
(hat), 383, 389, 414
(hrt), 391
(smti), 407
(srti), 395, 414
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(srti-grp), 211
rank-maximal popular, 344, 345
rank-maximal stable, 224, 394
resident-optimal stable, 20, 237
resident-Pareto stable, 149
S-complete, 336
setwise stable, 259
sex-equal stable, 23, 61, 93, 109,

124
sex-equal strongly stable, 29
sex-equal super-stable, 29
sex-equal weakly stable, 29, 146,

171
stable, 5

(3gsm), 274
(3psa), 281
(hr), 19, 324
(hr-cq), 235
(hr-hr), 240
(hr-lq-1), 230
(hrc), 246
(hrs), 253
(smff), 108
(smi), 22
(spa-(s,p)), 272
(spa-p), 269
(spa-s), 263
(sr-tr), 283
(sri), 32, 326, 328
(wf-1), 256

strongly blocking, 318
strongly popular, 42, 354, 371, 380
strongly stable

(3dsm-cyc), 279
(3dsmi-cyc), 280
(3dsmt-cyc), 281
(3gsm), 277
(3psa), 283
(3wkt), 285
(b-way stable l-way exchange

problem), 285
(geometric srti), 212
(hrp), 27, 169
(hrt), 150
(smti), 61, 171
(spa-s), 268

(srpi), 37
(srti), 147, 201
(srti-grp), 211
(wf with ties), 168

student-optimal stable, 264, 265
super-stable

(3dsmt-cyc), 281
(3gsm), 277
(3psa), 283
(3wkt), 285
(geometric srti), 212
(hrp), 28, 169
(hrt), 159
(smti), 61
(spa-s), 268
(srpi), 37
(srti), 201

symmetric stable, 176
trade-in-free

(cha), 320
(ha), 305, 306, 308

ultra-stable
(3gsm), 277
(3psa), 283

undirected graph, 14
weakly blocking, 313
weakly stable

(3dsm-cyc), 279, 299
(3dsmi-cyc), 280
(3dsmt-cyc), 281
(3gsm), 277
(3psa), 283
(3wkt), 285
(b-way stable l-way exchange

problem), 286
(geometric 3dsr), 286
(geometric srti), 213
(hrp), 27, 169
(hrt), 128
(smti), 60, 171
(spa-s), 268
(srpi), 37
(srti), 199
(srti-grp), 211
inapproximability, 137
interpolation, 131
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size, 130

weight-maximal, 391, 406

weighted rank-maximal, 389

woman-coalition-exchange-stable,
289–291

woman-exchange-stable, 289

woman-optimal stable, 75, 78, 102,
103, 106

woman-strongly stable, 167, 168

worker-optimal stable, 257, 259

Matching Game, 12

matching problem

bipartite with one-sided
preferences, 4, 5

bipartite with two-sided
preferences, 4

non-bipartite with preferences, 4, 6

tripartite with preferences, 7

matching theory, 8

matroid, 72, 263

max hr+sn, 123
max hrt, 128, 142, 170

max pop ps hr-lq-1, 232

max ps hr-lq-1, 232

max sf sat, 218

max size exact ba smi, 101

max size exact bp smi, 101

max size min ba (p, q)-smi, 101

max size min ba smi, 100, 101

max size min bp (p, q)-smi, 101

max size min bp smi, 100, 101

max smti, 128, 140, 168, 170
NP-hardness, 132

max spa-p, 270

max stability, 112

max stable matchings, 112

max–min criterion, 256

Max-Planck Institut für Informatik,
333

maximal matching, see matching,
maximal

maximum cardinality matching, see
matching, maximum

maximum matching, see matching,
maximum

maximum Pareto optimal matching,
see matching, maximum Pareto
optimal

maximum popular matching, see
matching, maximum popular

maximum profile augmenting path,
see augmenting path, maximum
profile

maximum stable matching, see
matching, maximum stable

maximum utility matching, see
matching, maximum utility

maximum weight matching, see
matching, maximum weight

maximum-length chain, 98
mechanism, 8, 106

strategy-proof, 8, 103, 247, 415
median

(vertex), 195, 198
choice, 33, 34, 180
graph, 194–196
semilattice, 196

median stable matching, see
matching, median stable

meet, 22, 130, 153, 154, 163
meet-semilattice, 34, 194, 196
MEGS algorithm, 74, 76, 116, 294
men, 22
mesesm, see Minimum Egalitarian

Sex-Equal Stable Marriage problem
mesh of trees, 58
meta-profile, 412

sorted, 412
meta-rotation, 61, 121, 257

poset, 121
metal-only ECO synthesis, see ECO

synthesis
MGS-lists, 74
military cadet, see cadet, military
min bp 2-sri, 207
min bp 3-sri, 207
min bp d-sri, 207–209
min bp hr-lq-2, 233
min bp hr-lq-3, 234
min bp sr, 204
min bp sri, 204



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

Index 483

min bp srt, 204, 205
min br hr-lq-2, 233
min br hr-lq-3, 234
min eds-d, 17
min mm-d, 17, 133
min smti, 144
Minimum Egalitarian Sex-Equal

Stable Marriage problem, 63
minimum maximal matching, see

matching, minimum maximal
minimum Pareto optimal matching,

see matching, minimum Pareto
optimal

minimum popular matching, see
matching, minimum popular

minimum regret
stable b-matching, see b-matching,

minimum regret stable
stable matching, see matching,

minimum regret stable
strongly stable matching, see

matching, minimum regret
strongly stable

super-stable matching, see
matching, minimum regret
super-stable

weakly stable matching, see
matching, minimum regret
weakly stable

minimum total regret stable
matching, see matching, minimum
total regret stable

minimum weight maximum
cardinality matching, see matching,
minimum weight maximum
cardinality

minimum weight maximum
cardinality popular matching, see
matching, minimum weight
maximum cardinality popular

mirror poset, 194–196
mixed matching, see matching, mixed
mixing time, 118
mm-chat, see Many–Many

Capacitated House Allocation
problem with Ties

monetary transfer, 12, 38
more popular than, 41, 358, 366, 368
MOT, see mesh of trees
multiple broadcasting buses, 59
multiple partner stable marriage

problem, 255

Nash-stability, 223
National Basketball Association, 390
National Resident Matching

Program, 3, 26, 30, 132, 243
naval cadet, see cadet, naval
naval officer, 304
navigator, 216
NC, 58, 68, 125
near-optimal stable matching, see

matching, near optimal stable
nested set system, 237, 242
network, 66

flow, 142
stability, 65, 66

Network Stability problem, 66
New York, 12, 31
NHS Education for Scotland, 30
NL, 68
no odd ring condition, 192, 200
non-bipartite matching problem, see

matching problem, non-bipartite
non-singular rotation, see rotation,

non-singular
normal orientation, 113, 115, 116
Northwestern University, 46
NRMP, see National Resident

Matching Program
ns, see Network Stability problem

occupancy, 253
odd party, 182, 183, 188–190, 207, 208

elitist, 208
odd ring, see no odd ring condition
odd vertex, 15
offer, 261
online

algorithm, 119, 187
dating, 31
matrimony, 31



February 21, 2013 15:47 BC: 8591 - Algorithmics of matching - 2nd Reading book

484 Index

open
hospital, 228, 230
neighbourhood, 15

optimal cheating strategy, 104
optimal matching, 3
optimal stable matching, see

matching, optimal stable
ordinal preferences, see preferences,

ordinal
Ordinal Transportation problem, 219
orientation, 113
out-degree, 342
outright winner, 358
oversubscribed, 18, 235, 256, 262

P-stable matching, see matching,
P-stable

P2P network, 13, 37, 209, 210, 212,
217, 218

pairwise kidney exchange, 37
pairwise stable matching, see

matching, pairwise stable
paper, 409
parallel algorithm, 58, 67
parameterized complexity, 135, 146,

249
Pareto improvement, 40, 329

chain, 148, 324
cycle, 148, 324

Pareto optimal matching, see
matching, Pareto optimal

Pareto optimal partition, 330
Pareto stable matching, see

matching, Pareto stable
partial information, see incomplete

information
partial order

(preference poset), 168, 202
on equivalence classes

(smt), 153
on rotations

(smi), 25
(sri), 35

on stable matchings
(hr), 21

partially ordered knapsack, 62

payments, 12
peer, 37
perfect matching, see matching,

perfect
permissible set of blocking pairs, see

blocking pair, permissible set
Permutation Game, 12
polytope, 72, 180
pop chat (1,2) caps, 363
pop chat min weight, 366
pop chat var caps-1, 363
pop chat var caps-2, 364
pop chat var caps-3, 365
pop chat var caps-4, 365, 366
popular hospital, 232
popular matching, see matching,

popular
popular mixed matching, see

matching, popular mixed
popular pair, 344
popular pairwise stable matching, see

matching, popular pairwise stable
poset, 119, 196–198
position point, 118
post, 18
precarious, 140
predecessor, 182
prefer

(Algorithm Király), 139
(geometric 3dsr), 286
(ha), 39, 40
(hr), 18, 21
(hrp), 26
(hrt), 147
(spa-s), 267
(srpi), 36
(wf-1), 256

Preference by Ordinal Number
scheme, 277

preference list
(ha), 39
(hr), 18
(sri), 32
bounded length, 126, 135
projected, 262
reduced, 323
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preference point, 118
preference poset

(hrp), 26
(srpi), 36

preferences
acyclic, 193
consistent, 251, 276, 282
lexicographic, 412
lexicographically acyclic, 278
lexicographically cyclic, 278
ordinal, 1
over groups, 258
responsive, 89, 147, 249, 258, 324
single-peaked, 212
strongly substitutable, 259
substitutable, 89, 258
symmetric, 135, 145, 146, 158, 165,

201, 202, 212, 379
tiered, 250
weakly responsive, 89, 250
weighted, 413

pressure, 350, 351
principal circuit, 116
principal marriage graph, see

marriage graph, principal
priority, 366
privacy, 124
private stable matching, see

matching, private stable
product order, 276
profile, 6

(chat), 382
(ha), 43
(hrt), 391
(mm-chat), 412
(srti), 395
(srti-grp), 212
weight-function, 407
weighted, 389

profile-based optimal matching, see
matching, profile-based optimal

programme, 30
Programme Committee, 409
project, 46, 261
projected preference list, see

preference list, projected

proof, 13
property rights, 287
proposal–rejection sequence, 81, 120
proposer, 81

quota
common, 11, 228, 234
lower, 11, 227, 230, 231, 239, 268,

298, 299
upper, 227, 230, 231, 239

R-value, 404
ra, see Reviewer Assignment problem
rabbi, 31
random best response dynamics, 89
random better response dynamics, 89
random instance, 174, 339, 389
Random Order Mechanism, 85, 126
Random Serial Dictatorship

Mechanism, 290, 304
random walk, 118
randomised algorithm, 348
randomised approximation scheme, 97
rank

(chat), 46
(ha), 39
(hr), 19
(hrt), 27
(sri), 33

rank profile, 123
rank-k edge, 384
rank-maximal matching, see

matching, rank-maximal
rank-maximal popular matching, see

matching, rank-maximal popular
rank-maximal stable matching, see

matching, rank-maximal stable
rationalizability, 112, 113, 224
rationalizable, 111
rationalizing matchings, 111, 126
reduced assignment graph, 155
reduced first choice, 309
reduced graph, 336, 346, 360, 361
reduced labelled graph, 374
reduced preference list, see preference

list, reduced
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reduced stable partition, see stable
partition, reduced

reflexive hypercube, 70
regional caps, 228, 238
regret

(ha), 42
(hrt), 391
(smi), 23
(sri), 33, 68
(srti), 395

relaxed linear extension, see linear
extension, relaxed

Rental Market problem, 408
residence-exchange fair, 46
resident, 3, 18

single, 244
resident-optimal stable matching, see

matching, resident-optimal stable
Resident-oriented Gale–Shapley

algorithm, 142
resident-oriented Gale–Shapley

algorithm, see Gale–Shapley
algorithm, resident-oriented

resident-Pareto improvement chain,
149

resident-Pareto improvement cycle,
149

resident-Pareto stable matching, 149,
see matching, resident-Pareto
stable

responsive preferences, see
preferences, responsive

reverse blocking pair, 294
reviewer, 409
reviewer assignment, 47
Reviewer Assignment problem, 410
RGS algorithm, see Gale–Shapley

algorithm, resident-oriented
right-dominate, 397
ROM, see Random Order Mechanism
roommates to marriage, 176
rotation

(smi), 25, 26, 72
(sr), 177
(sri), 35, 36
backward, 296

dual, 35
elimination

(smi), 25
(sri), 35

exposed
(smi), 25
(sri), 35

forward, 296
improper, 183
non-singular, 35, 36, 178, 179, 195,

196
poset, 178

(smi), 25
(sri), 35, 36
extended, 178

singular, 35, 36, 178, 179
rotation digraph, 25, 62
rotation poset, 93
Roth–Vande Vate algorithm, 200
Roth–Vande Vate Mechanism, 80, 81,

126
Rural Hospitals Theorem, 21, 151,

160, 161, 169, 230, 238, 242, 265
RVV, see Roth–Vande Vate

Mechanism

s-house, 336, 345, 360
sa, see Stable Allocation problem
sampling

popular matchings, 343
rank-maximal matchings, 415
stable matchings, 117, 118

sat, 296
satisfying blocking pairs, see blocking

pair, satisfying
satisfying cyclic coalitions, see cyclic

coalition, satisfying
satisfying improving coalitions, see

improving coalition, satisfying
satisfying truth assignment, 178
saturated, 219
sc, see Stable Crews problem
scaling algorithm, 388
scatter-free, 66

gate, 65, 69
school choice, 12
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school placement, 31
Scotland, 30
Scottish Foundation Allocation

Scheme, 26, 30, 99, 135, 142
scramble, 132
second chance, 139
self-stabilising algorithm, 358
semilattice, 34, 194
Serial Dictatorship Mechanism, see

Algorithm SDM

Serial Dictatorship Mechanism for
sri, 325

series–parallel graph, 63
sesm, see Sex-Equal Stable Matching

problem
set system of hospitals, 234
setwise stable matching, see

matching, setwise stable
sex-equal stable matching, see

matching, sex-equal stable
Sex-Equal Stable Matching problem,

61
sex-equal weakly stable matching, see

matching, sex-equal weakly stable
sex-equality measure, 23, 61
sf, see Stable Fixtures problem
SFAS, see Scottish Foundation

Allocation Scheme
sft, see Stable Fixtures problem with

Ties
shared memory architecture, 58
Singapore, 31
single resident, see resident, single
singular rotation, see rotation,

singular
sink vertex, 114, 342
size

(3gsm), 274
(3psa), 281
(hrc), 253
(smi), 22
(sri), 32

skip, 409
sm, see Stable Marriage problem
sma, see Stable Multiple Activities

problem

smf, see Stable Marriage problem
with Forbidden Pairs

smfd, see Stable Marriage problem
with Forced Pairs

smff, see Stable Marriage problem
with Forced and Forbidden Pairs

smi, see Stable Marriage problem
with Incomplete lists

smp, see Stable Marriage problem
with Partially ordered lists

smpi, see Stable Marriage problem
with Partially ordered and
Incomplete lists

smt, see Stable Marriage problem
with Ties

smti, see Stable Marriage problem
with Ties and Incomplete Lists

social network graph, 122
solvability probability, 175, 202, 223,

348, 367
solvable, 32, 113, 115, 174, 177, 180,

182, 192, 223, 334, 378
sorority rush, 31
sorted meta-profile, see meta-profile,

sorted
spa, see Student–Project Allocation

problem
spa-(s,p), 271
spa-p, 269
spa-s, 261, 298
Spain, 31
sponsored search, 31
sr, see Stable Roommates problem
sr-tr, see Stable Roommates

problem with Triple Rooms
srcf, see Stable Roommates problem

with Choice Functions
srf, see Stable Roommates problem

with Forbidden Pairs
srfr, see Stable Roommates problem

with FRee pairs
sri, see Stable Roommates problem

with Incomplete lists
srp, see Stable Roommates problem

with Partially ordered lists
srpi, see Stable Roommates problem
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with Partially ordered and
Incomplete lists

srt, see Stable Roommates problem
with Ties

srti, see Stable Roommates problem
with Ties and Incomplete lists

srti-gap, see Stable Roommates
problem with Globally Acyclic
Preferences

srti-grp, 211, see Stable Roommates
problem with Globally Ranked
Pairs

stable admissions polytope, 73
Stable Admissions problem, 18
stable allocation, see allocation,

stable
Stable Allocation problem, 6, 176, 219
stable b-matching, see b-matching,

stable
stable b-matching problem, see Stable

Multiple Activities problem
stable configuration, 65, 66
Stable Crews problem, 216
Stable Fixtures problem, 6, 216, 257

with Ties, 217
stable half-matching, 180, 190
stable half-partnership, 221
stable improvement cycle, 149
Stable Marriage problem, 4, 23

k-attribute model, 117–119
k-Euclidean model, 118, 119
k-list model, 117, 118
k-range model, 117, 118
with Forbidden pairs, 108, 109
with Forced and Forbidden pairs,

107–109
with Forced pairs, 108
with Incomplete lists, 22, 109
with Partially ordered and

Incomplete lists, 27
with Partially ordered lists, 27
with Preference posets and

Forbidden pairs, 215
with Ties, 27
with Ties and Incomplete lists, 27

stable matching, see matching, stable

Stable Multiple Activities problem, 6,
218

stable pair, 219
(hr), 19
(smf), 108
(smi), 25, 26, 64, 71, 123
(sri), 32, 36, 68, 179
(wf-1), 257

stable partition, 10, 67, 177, 182, 190,
191, 194
finding, 184
reduced, 185, 187

stable partner
(hr), 19
(sri), 32

stable partnership, 221
Stable Roommates problem, 6, 32, 33

with Choice Functions, 220
with Forbidden Pairs, 213, 215
with FRee pairs, 215
with Globally Acyclic Preferences,

210
with Globally Ranked Pairs, 209,

396
with Incomplete lists, 32
with Partially ordered and

Incomplete lists, 36
with Partially ordered lists, 36
with Payments, 12
with Preference posets and

Forbidden pairs, 215
with Ties, 36
with Ties and Incomplete lists, 36
with Triple Rooms, 283

stable table, 35, 219
stable worker improvement chain, 149
stable worker improvement cycle, 149
strategy, 63, 102

(hr), 107
(sm), 102–107
(sr), 107

strategy proof mechanism, see
mechanism, strategy-proof

strict core matching, see matching, in
the strict core

strong Condorcet winner, 359
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strong core matching, 313

strong core partition, 222, 330

strong justified envy, 234

strong majority assignment, 333

strongly blocking

matching, see matching, strongly
blocking

triple, 279

strongly connected component, 317,
351

strongly Pareto optimal partition, 330

strongly polynomial-time algorithm,
388

strongly popular matching, see
matching, strongly popular

strongly stable matching, see
matching, strongly stable

strongly stable pair, 28, 171

strongly stable partner, 28

strongly substitutable preferences, see
preferences, strongly substitutable

student, 261

Student–Project Allocation problem,
5, 260

student-optimal stable matching, see
matching, student-optimal stable

subdivision graph, 17, 311

substitutable (choice function), 221

substitutable preferences, see
preferences, substitutable

successor, 113, 182, 284

succinct certificate, 64, 165, 166, 171,
177, 183, 215

super-stable matching, see matching,
super-stable

super-stable pair, 28, 166, 202, 215

super-stable partner, 28

switching cycle, 342

switching graph, 341, 379

switching path, 342

symmetric preferences, see
preferences, symmetric

syntactic dual, 35, 178

tail, 137, 155, 169

Tarski’s fixed-point theorem, 67, 71,
72

Teacher Induction Scheme, 47
Technion, 46
testing

Pareto optimality
(cha), 320
(ha), 306
(hat), 317
(sri), 328

popularity
(ha), 336
(hat), 346
(smi), 375
(smti), 379
(sri), 369
(srti), 370

strong popularity
(hat), 355
(sri), 372
(srti), 373

Three-Dimensional Stable Marriage
problem, 7, 273
with Cyclic Preferences, 278, 299

Three-Gender Stable Marriage
problem, 274

Three-Person Stable Assignment
Problem, 281

Three-Way Kidney Transplant, 284
tie, 6, 27
tie-breaking, 129, 132, 151, 160, 161,

169, 199, 201, 202, 213, 214
heuristic, 142

tiered preferences, see preferences,
tiered

Tit-for-Tat strategy, 38
Top Trading Cycles algorithm, 286,

307, 308, 314, 320, 331
topological ordering, 351
total regret, 257
tournament, 217
trade-in-free matching, see matching,

trade-in-free
transferable utility, 12
transition function, 69
transitive closure, 178, 179
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transitive reduction, 116
transposition, 182
tree component, 342
tripartite matching problem, see

matching problem, tripartite
truncation strategy, 103
truthful mechanism, see mechanism,

strategy-proof
TTC algorithm, see Top Trading

Cycles algorithm
TU games, 12
Turkey, 31

udcs, see Upper Degree Constrained
Subgraph problem

UGC, see Unique Games Conjecture
UGC-hard, 270
ultra-stable matching, see matching,

ultra-stable
unassigned, 18

(ha), 39
(spa-s), 262

underlying graph
(ha), 39
(hr), 19
(sri), 32

undersubscribed, 18, 45, 235, 256
undirected graph, see graph,

undirected
Unique Games Conjecture, 138, 180
United States Naval Academy, 304
universally manipulable, 106
University Admissions problem, 18
university faculty recruitment, see

faculty recruitment
University of Glasgow, 46

School of Computing Science, 46,
99, 333

School of Medicine, 46
University of Michigan, 46
University of Pennsylvania, 46
unpopularity factor, 349, 352, 371,

389
unpopularity margin, 349, 352
unravelling, 2
unreachable vertex, 16

unsolvable, 32, 183, 184, 203–205, 334
Unsplittable Stable Marriage

problem, 254
unstable pair, 64
Upper Degree Constrained Subgraph

problem, 16, 65
upper quota, see quota, upper
USA, 2, 3, 5, 31, 46
utility, 40

valuation function, 409
value-ordering heuristic, 75, 78
variable house capacities, 362
vertex cover, 136, 138, 180
voting path, 356

W -preferences, 222
W[1], 249
W[1]-hard, 135, 249
WB-preferences, 222
wcha, see Weighted Capacitated

House Allocation problem
wchat, see Weighted Capacitated

House Allocation problem with
Ties

weak Condorcet winner, 359
weak core matching, 318
weak srt, 199
weakly blocking

coalition, 222
matching, see matching, weakly

blocking
triple, 279

weakly responsive preferences, see
preferences, weakly responsive

weakly stable matching, see
matching, weakly stable

weakly stable pair, 28, 145
weakly stable partner, 28
WEGS algorithm, 74, 76, 116
weight

of a matching, 40
of a profile, 413
of a stable matching, 23

weight-function profile, see profile,
weight-function
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weight-maximal matching, see
matching, weight-maximal

weighted 2-sat, see 2-sat, weighted
Weighted Capacitated House

Allocation problem, 367
with Ties, 367

Weighted House Allocation problem,
366
with Ties, 367, 389

weighted preferences, see preferences,
weighted

weighted profile, see profile, weighted
weighted regret, 407
Weighted Upper Degree Constrained

Subgraph problem, 393
wf, see Workers / Firms problem
wf-1, 256, 298
wf-1 with ties, 257
WGS-lists, 74
wha, see Weighted House Allocation

problem
what, see Weighted House

Allocation problem with Ties

witness, 64
woman-exchange-blocking coalition,

289
woman-optimal stable matching, see

matching, woman-optimal stable
woman-strongly stable matching, see

matching, woman-strongly stable
women, 22
worker, 29, 255
worker-optimal stable matching, see

matching, worker-optimal stable
Workers / Firms problem, 5, 255
worst assigned resident, 28
wudcs, see Weighted Upper Degree

Constrained Subgraph problem

X-gate, 66
x-ns, 66

Y-gates, 69
y-ns, 69

Zillow, 390
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